
Comp 324/424 - Client-side Web Design

Spring Semester 2024 Week 6

Dr Nick Hayward

JS Basics - variables - part 1

• symbolic container for values and data
• applications use containers to keep track and update values
• use a variable as a container for such values and data

– allow values to vary over time
• JS can emphasize types for values, does not enforce on the variable

– weak typing or dynamic typing
– JS permits a variable to hold a value of any type

• often a benefit of the language
• a quick way to maintain flexibility in design and development

JS Basics - variables - part 2

• declare a variable using the keyword var
• declaration does not include type information

var a = 49;
//double var a value
var a = a * 2;
//coerce var a to string
var a = String(a);
//output string value to console
console.log(a);

• var a maintains a running total of the value of a
• keeps record of changes, effectively state of the value
• state is keeping track of changes to any values in the application

JS Basics - variables - part 3

• use variables in JS to enable central, common references to our values and data
• better known in most languages simply as constants
• JS is similar

– creates a read-only reference to a value
– value itself is not immutable, e.g. an object…
– it’s simply the identifier that cannot be reassigned
– JS constants are also bound by scoping rules

• allow us to define and declare a variable with a value

1

– not intended to change throughout the application
• constants are often declared together

– uppercase is standard practice - although not a rule…
• form a store for values abstracted for use throughout an app
• JS normally defines constants using uppercase letters,

var NAME = "Philae";

• ECMAScript 6, ES6, introduces additional variable keywords
– e.g. const

const TEMPLE_NAME = "Philae";

• benefits of abstraction, ensuring value is not accidentally changed
– change rejected for a running app
– in strict mode, app will fail with an error for any change

JS Basics - values and types

• JS has typed values, not typed variables
• JS provides the following built-in types

– boolean
– null
– number
– object
– string
– symbol (new in ES6)
– undefined

• more help provided by JS’s typeof operator
– examine a value and return its type

var a = 49;
console.log(typeof a); //result is a number

• as of ES6, there are 7 possible return types in JS
• NB: JS variables do not have types, mere containers for values

– values specify the type
var a = null;
console.log(typeof a); //result is object - known bug in JS...

JS Basics - comments

• JS permits comments in the code
• two different implementations

single line
//single line comment
var a = 49;

multi-line
/* this comment has more to say...
we'll need a second line */
var b = "forty nine";

2

JS Basics - logic - blocks

• simple act of grouping contiguous and related code statements together
– known as blocks

• block defined by wrapping statements together
– within a pair of curly braces, {}

• blocks commonly attached to other forms of control statement
if (a > b) {
...do something useful...
}

JS Basics - logic - conditionals - part 1

• conditionals, conditional statements require a decision to be made
• code statement, application, consults state

– answer will predominantly be a simple yes or no
• JS includes many different ways we can express conditionals
• most common example is the if statement

– if this given condition is true, do the following…
if (a > b) {
console.log("a is greater than b...");
}

• if statement requires an expression between the parentheses
– evaluates as either true or false

JS Basics - logic - conditionals - part 2

• additional option if this expression returns false
– using an else clause

if (a > b) {
console.log("a is greater than b...");
} else {
console.log("no, b is greater...");
}

• for an if statement, JS expects a boolean
• JS defines a list of values that it considers false

– e.g. 0 …
• any value not on this list of false values will be considered true

– coerced to true when defined as a boolean
• conditionals in JS also exist in another form

– the switch statement
– more to come…

JS Basics - logic - loops

• loops allow repetition of sets of actions until a condition fails

3

• repetition continues whilst the requested condition holds
• loops take many different forms and follow this basic behaviour
• a loop includes the test condition as well as a block

– normally within curly braces
– block executes, an iteration of the loop has occurred

• good examples of this behaviour include while and do...while loops
• basic difference between these loops, while and do...while

– conditional tested is before the first iteration (while loop)
– after the first iteration (do...while) loop

• if the condition is initially false
– a while loop will never run
– a do...while will run through for the first time

• also stop a JS loop using the common break statement
• for loop has three clauses, including

– initialisation clause
– conditional test clause
– update clause

JS Basics - logic - functions - part 1

• functions are a type of object
– may also have their own properties
– define once, then re-use as needed throughout our application

• function is a named grouping of code
– name can be called, and code will be run each time

• JS functions can be designed with optional arguments
– known as parameters
– allow us to pass values to the function

• functions can also optionally return a value
function outputTotal(total) {
console.log(total);

}
var a = 49;
a = a * 3; // or use a *= 3;

outputTotal(a);

JS Basics - logic - functions - part 2

function outputTotal(total) {
console.log(total);

}

function calculateTotal(amount, times) {
amount = amount * times;
return amount;

}

var a = 49;

4

a = calculateTotal(a, 3);
outputTotal(a);

• JSFiddle Demo

JS Basics - logic - scope

• scope or lexical scope
– collection of variables, and associated access rules by name

• in JS each function gets its own scope
• variables within a function’s given scope

– can only be accessed by code inside that function
• variable name has to be unique within a function’s scope
• same variable name could appear in different scopes
• nest one scope within another

– code in inner scope can access variables from either inner or outer scope
– code in outer scope cannot, by default, access code in the inner scope

JS Basics - logic - scope example

function outerScope() {
var a = 49;
//scope includes outer and inner
function innerScope() {
var b = 59;
//output a and b
console.log(a + b); //returns 108

}
innerScope();

//scope limited to outer
console.log(a); //returns 49

}

//run outerScope function
outerScope();

• JSFiddle Demo

CSS Basics - selectors

• selectors are a crucial part of working with CSS, JS…
• basic selectors such as
p {
color: #444;

}

• above ruleset adds basic styling to our paragraphs
– sets the text colour to HEX value 444

• simple and easy to apply

5

http://jsfiddle.net/ancientlives/0432kzb0/
http://jsfiddle.net/ancientlives/7wgvkjub/

– applies the same properties and values to all paragraphs
• specificity requires classes, pseudoclasses…

HTML5, CSS, & JS - example - part 8

function travelNotes() {
"use strict";

// get a reference to `.note_output` in the DOM
// n.b. these can be combined as well...
let noteOutput = document.querySelector('.note-output');
noteOutput.innerHTML = '<p>first travel note for Marseille...</p>';

}

// load app
travelNotes();

travel.js - plain JS

• a simple JS function to hold the basic logic for our app
• call this function any reasonable, logical name
• in initial function, we set the strict pragma
• many different ways to achieve this basic loading of app logic
• DEMO - travel notes - series 1

JS Basics - strict mode

• intro of ES5 - JS now includes option for strict mode
– ensures tighter code and better compliance…
– often helps ensure greater compatibility, safer use of language…
– can also help optimise code for rendering engines

• add strict at different levels within our JS code
– e.g. single function level or enforce for whole file

function outerScope() {
"use strict";
//code is strict

function innerScope() {
//code is strict

}
}

• if we set strict mode for complete file - set at top of file
– all functions and code will be checked against strict mode

∗ e.g. check against auto-create for global variables
∗ or missing var keyword for variables…

function outerScope() {
"use strict";

6

http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo1/

a = 49; // `var` missing - ReferenceError
}

Video - JavaScript

strict mode JavaScript Strict Mode - UP TO 4:32

Source - JavaScript - Overview of Strict Mode

HTML5, CSS, & JS - example - part 9

interaction - add a note - plain JS

• added and styled our input and button for adding a note
• use JavaScript to handle click event on button
• update travel.js file for event handler

let addNoteBtn = document.getElementById('add-note');
addNoteBtn.addEventListener('click', () => {
console.log('add button clicked...');

});

JS Core - more variables - part 1

• a few rules and best practices for naming valid identifiers
• using typical ASCII alphanumeric characters

– an identifier must begin with a-z, A-Z, $, _
– may contain any of those characters, plus 0-9

• property names follow this same basic pattern
• careful not to use certain keywords, or reserved words
• reserved words can include such examples as,

– break, byte, delete, do, else, if, for, this, while and so on
– further details are available at the W3 Schools site

• in JS, we can use different declaration keywords relative to intended scope
– var for local, global for global…

• such declarations will influence scope of usage for a given variable
• concept of hoisting

– defines the declaration of a variable as belonging to the entire scope
– by association accessible throughout that scope as well
– also works with JS functions - hoisted to the top of the scope

JS Core - more variables - part 2

• concept of nesting, and scope specific variables
• ES6 enables us to restrict variables to a block of code
• use keyword let to declare a block-level variable

if (a > 5) {
let b = a + 4;

7

https://www.youtube.com/watch?v=w3xaL6jSOiI
http://www.w3schools.com/js/js_reserved.asp

console.log(b);

}

• let restricts variable’s scope to if statement
• variable b is not available to the whole function

ES6 - let variable

// function
var archiveCheck = function (level) {
// add variable for archive
var archive = 'waldzell';
// specify purpose - default return
var purpose = 'restricted';

// check access level
if (level === 'castalia') {
let purpose = 'gaming';
return purpose;

}

return purpose;
}

// log output - pass correct parameter value
console.log(`archive purpose is ${archiveCheck('castalia')}`);

// log output - pass incorrect parameter value
console.log(`archive purpose is ${archiveCheck('mariafels')}`);

JS Core - let

example

• Random Greeting Generator - A bit better

Video - Variables

let and const JavaScript scope and variable usage - UP TO 2:30

Source - JavaScript scope and variables

JS Core - more variables - part 3

• add strict mode to our code
• without we get a variable that will be hoisted to the top either

– set as a globally available variable, although it could be deleted
– or it will set a value for a variable with the matching name

8

http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-better/
https://www.youtube.com/watch?v=iJKkZA215tQ

• bubbled up through the available layers of scope
• becomes similar in essence to a declared global variable
• can create some strange behaviour in our applications

– tricky and difficult to debug
• remember to declare your variables correctly and at the top

JS Core - more variables - example

var a;

function myScope() {
"use strict";
a = 49;

}

myScope()
a = 59;
console.log(a);

HTML5, CSS, & JS - example - part 10

interaction - add a note - output - plain JS

• update code to better handle and output the text from the input field
• what is this handler actually doing?

– attached an event listener to an element in the DOM
– uses standard CSS selectors to find the required element

• JavaScript can select and target DOM elements using standard CSS selectors
– then manipulate them, as required

function travelNotes() {
"use strict";

// get a reference to `.note_output` in the DOM
let noteOutput = document.querySelector('.note-output');
// add note button
let addNoteBtn = document.getElementById('add-note');

// add event listener to add note button
addNoteBtn.addEventListener('click', () => {
// create p node
let p = document.createElement('p');
// create text node
let noteText = document.createTextNode('sample note text...');
// append text to paragraph
p.appendChild(noteText);
// append new paragraph and text to existing note output
noteOutput.appendChild(p);

});

}

9

• DEMO - travel notes - series 1

HTML5, CSS, & JS - example - part 11

function travelNotes() {
"use strict";

// get a reference to `.note_output` in the DOM
let noteOutput = document.querySelector('.note-output');
// add note button
let addNoteBtn = document.getElementById('add-note');
// input field for add note
let inputNote = document.getElementById('input-note');

addNoteBtn.addEventListener('click', () => {
// create p node
let p = document.createElement('p');
// get value from input field for note
let inputVal = inputNote.value;
// create text node
let noteText = document.createTextNode(inputVal);
// append text to paragraph
p.appendChild(noteText);
// append new paragraph and text to existing note output
noteOutput.appendChild(p);

});

}

interaction - add a note - output - plain JS

• DEMO - travel notes - series 1

ES6 JS - Arrow functions

/**
js-plain - definitions and arguments
- basic example for arrow function

**/

// define array for planets
planets = ['mars', 'jupiter', 'venus'];
// use for each loop with array, and create arrow function for output to console
planets.forEach(planet => console.log(planet));

basic

• Demo

10

http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/functions/arrow-function/basic/

ES6 JS - Arrow functions

/**
js-plain - definitions and arguments
- example of arrow function with function context

**/

// button constructor
function Button() {
this.clicked = false;
// arrow function in function context
this.click = () => {
this.clicked = true;
var message = `button clicked - ${this.clicked}`;
console.log(message);
document.getElementById("output").append(message);

};
}

// create button object
var button = new Button();
var element = document.getElementById("test");
element.addEventListener("click", button.click);

function context

• Demo

ES6 JS - Arrow functions

example

• Random Greeting Generator - A bit better - v0.2

HTML5, CSS, & JS - example - part 12

function travelNotes() {
"use strict";

// get a reference to `.note_output` in the DOM
let noteOutput = document.querySelector('.note-output');
// add note button
let addNoteBtn = document.getElementById('add-note');
// input field for add note
let inputNote = document.getElementById('input-note');

// add event listener to add note button
addNoteBtn.addEventListener('click', () => {
// create p node
let p = document.createElement('p');
// get value from input field for note

11

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/functions/arrow-function/function-context/
http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-better2/

let inputVal = inputNote.value;

// check input value
if (inputVal !== '') {
// create text node
let noteText = document.createTextNode(inputVal);
// append text to paragraph
p.appendChild(noteText);
// append new paragraph and text to existing note output
noteOutput.appendChild(p);
// clear input text field
inputNote.value = '';

}
});

}

interaction - add a note - clear input - plain JS

• DEMO - travel notes - series 1

JS Core - closures - part 1

• important and useful aspect of JavaScript
• dealing with variables and scope

– continued, broader access to ongoing variables via a function’s scope
• closures as a useful construct to allow us to access a function’s scope

– even after it has finished executing
• can give us something similar to a private variable

– then access through another variable using relative scopes of outer and inner
• inherent benefit is that we are able to repeatedly access internal variables

– normally cease to exist once a function had executed

JS Core - closures - example - 1

//value in global scope
var outerVal = "test1";

//declare function in global scope
function outerFn() {
//check & output result...
console.log(outerVal === "test1" ? "test is visible..." : "test not visible...");

}

//execute function
outerFn();

Image - JS Core - closures - global scope

12

http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo5/

Figure 1: JS Core - Closures - global scope

Video - JS Core

closures - part 1 Closures in JavaScript - UP TO 3:17

Source - JavaScript Closures - YouTube

JS Core - closures - example - 2

"use strict";

function addTitle(a) {
var title = "hello ";
function updateTitle() {
var newTitle = title+a;
return newTitle;

}
return updateTitle;

}

var buildTitle = addTitle("world");
console.log(buildTitle());

JS Core - closures - part 2

Why use closures?

• use closures a lot in JavaScript
– real driving force behind Node.js, jQuery, animations…

• closures help reduce amount, complexity of code necessary for advanced features
• closures help us add otherwise impossible features, e.g.

– any task using callbacks - event handlers…
– private object variables…

• closure allows us to work with a function that has been defined within another scope
– still has access to all variables within the defined outer scope
– helps create basic encapsulated data
– store data in a separate scope - then share it where needed

JS Core - closures - part 3

function count(a) {
return function(b) {

return a + b;
}

13

https://www.youtube.com/watch?v=CQqwU2Ixu-U

}

var add1 = count(1);
var add5 = count(5);
var add10 = count(10);

console.log(add1(8));
console.log(add5(8));
console.log(add10(8));

• using one function to create multiple other functions, add1 , add5 , add10 , and so on.

Video - JS Core

closures - part 2 Closures in JavaScript - UP TO 5:21

Source - JavaScript Closures - YouTube

JS Core - closures - example - 3

// variables in global scope
var outerVal = "test2";
var laterVal;

function outerFn() {
// inner scope variable declared with value - scope limited to function
var innerVal = "test2inner";
// inner function - can access scope from parent function & variable innerVal
function innerFn() {
console.log(outerVal === "test2" ? "test2 is visible" : "test2 not visible");
console.log(innerVal === "test2inner" ? "test2inner is visible" : "test2inner is not visible");

}
// inner function now added to global scope - now able to access elsewhere & call later
laterVal = innerFn;

}
// invokes outerFn, innerFn is created, and its reference assigned to laterVal
outerFn();
// THEN - innerFn is invoked using laterVal - can't access innerFn directly...
laterVal();

Image - JS Core - closures - inner scope

JS Core - closures - part 4

• how is the innerVal variable available when we execute the inner function?
– this is why closures are such an important and useful concept in JavaScript
– use of closures creates a sense of persistence in the scope

• closures help create

14

https://www.youtube.com/watch?v=CQqwU2Ixu-U

Figure 2: JS Core - Closures - inner scope

– scope persistence
– delayed access to functions and variables

• closure creates a safe wrapper around
– the function
– variables that are in scope as a function is defined

• closure ensures function has everything necessary for correct execution
• closure wrapper persists whilst function exists

n.b. closure usage is not memory free - there is an impact on app memory and usage…

Video - JS Core

closures - part 3 Closures in JavaScript - UP TO 6:20

Source - JavaScript Closures - YouTube

JS core - this

• this keyword - correct and appropriate usage
– commonly misunderstood feature of JS

• value of this is not inherently linked with the function itself
• value of this determined in response to how the function is called
• value itself can be dynamic, simply based upon how the function is called
• if a function contains this , its reference will usually point to an object

JS core - this - part 1

global, window object

• when we call a function, we can bind the this value to the window object
• resultant object refers to the root, in essence the global scope

function test1() {
console.log(this);

}

test1();

• NB: the above will return a value of undefined in strict mode.
• also check for the value of this relative to the global object,

15

https://www.youtube.com/watch?v=CQqwU2Ixu-U

var a = 49;

function test1() {
console.log(this.a);

}

test1();

• JSFiddle - this - window
• JSFiddle - this - global

JS core - this - part 2

object literals

• within an object literal, the value of this , thankfully, will always refer to its own object
var object1 = {

method: test1
};

function test1() {
console.log(this);

}

object1.method();

• return value for this will be the object itself
• we get the returned object with a property and value for the defined function
• other object properties and values will be returned and available as well
• JSFiddle - this - literal
• JSFiddle - this - literal 2

JS core - this - part 3

var sites = {};
sites.name = "philae";

sites.titleOutput = function() {
console.log("Egyptian temples...");

};

sites.objectOutput = function() {
console.log(this);

};

console.log(sites.name);
sites.objectOutput();
sites.titleOutput();

object literals

16

http://jsfiddle.net/ancientlives/o6d77tye/
http://jsfiddle.net/ancientlives/2r4grha1/
http://jsfiddle.net/ancientlives/d93bkbq8/
http://jsfiddle.net/ancientlives/kt3g4wou/

Image - Object literals console output

Figure 3: JS - this - object literals output

JS core - this - part 4

events

• for events, value of this points to the owner of the bound event
<div id="test">click to test...</div>

var testDiv = document.getElementById('test');

function output() {
console.log(this);

};

testDiv.addEventListener('click', output, false);

• element is clicked, value of this becomes the clicked element
• also change the context of this using built-in JS functions

– such as .apply() , .bind() , and .call()
• JSFiddle - this - events

HTML5, CSS, & JS - example - part 13

interaction - add a note - keyboard listener - plain JS

• need to consider how to handle keyboard events
• listening and responding to a user hitting the return key in the input field
• similar pattern to user click on button

// add event listener for keypress in note input field
inputNote.addEventListener('keypress', (e) => {
// check key pressed by code - 13 - return
if (e.keyCode === 13) {
console.log('return key pressed...');

}
});

• need to abstract handling both button click and keyboard press
• need to be selective with regard to keys pressed
• add a conditional check to our listener for a specific key
• use local variable from the event itself, e.g. e , to get value of key pressed

17

http://jsfiddle.net/ancientlives/e5ekrk1w/

• compare value of e against key value required
• example recording keypresses

– Demo Editor

Video - Users and interaction

digital accessibility What is digital accessibility?

Source - Digital Accessibility - YouTube

Demos

Travel Notes - series 1

• travel notes - demo 1
• travel notes - demo 2
• travel notes - demo 3
• travel notes - demo 4
• travel notes - demo 5

JavaScript

• Basic logic - functions
• Basic logic - scope

– Basic logic - arrow functions
– Basic logic - arrow function context

random greeting generator

• Random Greeting Generator - v0.1
• let usage - Random Greeting Generator
• Random Greeting Generator - A bit better - v0.2

Resources

• JS
– MDN - JS
– JavaScript Closures - YouTube
– JavaScript - Scope and variables - YouTube
– JS Info - DOM Nodes
– MDN - JS Const

∗ MDN - JS Data Types and Data Structures
∗ MDN - JS Grammar and Types
∗ MDN - JS Objects
∗ W3 Schools - JS

18

http://linode4.cs.luc.edu/teaching/cs/demos/441/edit/v1/
https://www.youtube.com/watch?v=grrx2Lva7T0
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo5/
http://jsfiddle.net/ancientlives/0432kzb0/
http://jsfiddle.net/ancientlives/7wgvkjub/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/functions/arrow-function/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/functions/arrow-function/function-context/
http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-basic/
http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-better/
http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-better2/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://www.youtube.com/watch?v=CQqwU2Ixu-U
https://www.youtube.com/watch?v=iJKkZA215tQ
https://javascript.info/dom-nodes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
http://www.w3schools.com/js/default.asp

	JS Basics - variables - part 1
	JS Basics - variables - part 2
	JS Basics - variables - part 3
	JS Basics - values and types
	JS Basics - comments
	JS Basics - logic - blocks
	JS Basics - logic - conditionals - part 1
	JS Basics - logic - conditionals - part 2
	JS Basics - logic - loops
	JS Basics - logic - functions - part 1
	JS Basics - logic - functions - part 2
	JS Basics - logic - scope
	JS Basics - logic - scope example
	CSS Basics - selectors
	HTML5, CSS, & JS - example - part 8
	JS Basics - strict mode
	Video - JavaScript
	HTML5, CSS, & JS - example - part 9
	JS Core - more variables - part 1
	JS Core - more variables - part 2
	ES6 - let variable
	JS Core - let
	Video - Variables
	JS Core - more variables - part 3
	JS Core - more variables - example
	HTML5, CSS, & JS - example - part 10
	HTML5, CSS, & JS - example - part 11
	ES6 JS - Arrow functions
	ES6 JS - Arrow functions
	ES6 JS - Arrow functions
	HTML5, CSS, & JS - example - part 12
	JS Core - closures - part 1
	JS Core - closures - example - 1
	Image - JS Core - closures - global scope
	Video - JS Core
	JS Core - closures - example - 2
	JS Core - closures - part 2
	JS Core - closures - part 3
	Video - JS Core
	JS Core - closures - example - 3
	Image - JS Core - closures - inner scope
	JS Core - closures - part 4
	Video - JS Core
	JS core - this
	JS core - this - part 1
	JS core - this - part 2
	JS core - this - part 3
	Image - Object literals console output
	JS core - this - part 4
	HTML5, CSS, & JS - example - part 13
	Video - Users and interaction
	Demos
	Resources

