Comp 324/424 - Client-side Web Design

Spring Semester 2024 Week 7

Dr Nick Hayward

JS Core - checking equality - part 1

« JS has four equality operators, including two not equal

— == === |= ==
b) * b *

e == - checks for value equality, whilst allowing coercion
e === - checks for value equality but without coercion

var a = 49;
var b = "49";

console.log(a == b);
console.log(a === b);

e first comparison checks values
— if necessary, try to coerce one or both values until a match occurs
— allows JS to perform a simple equality check
— results in true

e second check is simpler
— coercion is not permitted, and a simple equality check is performed
— results in false

JS Core - checking equality - part 2

e which comparison operator should we use
« useful suggestions for usage of comparison operators

— use === if either side of the comparison could be true or false
— use === if either value could be one of the following specific values,
x 0 , nn , []

otherwise, it’s safe to use ==
simplify code in a JS application due to the implicit coercion.
e not equal counterparts, ! and !== work in a similar manner

JS Core - checking inequality - part 1

e known as relational comparison, we can use the inequality operators,
- <, >, <=, >=

e inequality operators often used to check comparable values like numbers
— inherent ordinal check

e can be used to compare strings

"hello" < "world"

e coercion also occurs with inequality operators
— no concept of strict inequality
= 49;
= n 59 n ;
= ngo" g

JS Core - checking inequality - part 2

e we can encounter an issue when either value cannot be coerced into a number

e issue for < and > is string is being coerced into invalid number value, NaN
e == coerces string to NaN and we get comparison between 49 == NaN

HTML5, CSS, & JS - example - part 14
interaction - add a note - abstract code

e need to create a new function to abstract

— creation and output of a new note

— manage the input field for our note app
« moving logic from button click function to separate, abstracted function
e then call this function as needed

— for a button click or keyboard press

— then create and render the new note

function createNote(input, output) {
let p = document.createElement('p');

let inputVal = input.value;

if (inputVal !== '') {

let noteText = document.createTextNode (inputVal) ;

p-appendChild(noteText) ;

output.appendChild(p);

input.value = '';

}

HTML5, CSS, & JS - example - part 15

function travelNotes() {
"use strict";
let noteOutput document . querySelector('.note-output');
let addNoteBtn = document.getElementById('add-note') ;
let inputNote = document.getElementById('input-note');

addNoteBtn.addEventListener('click', () => {
createNote (inputNote, noteOutput);

1D

inputNote.addEventListener ('keypress', (e) => {

if (e.keyCode === 13) {
createNote (inputNote, noteOutput);
+
s

travelNotes();

interaction - add a note - plain JS

e DEMO - travel notes - series 1

HTMLS5, CSS, & JS - example - part 16
interaction - add a note - animate

e JavaScript well-known for is its simple ability to animate elements
e many built-in effects available in various JS animation libraries
— build our own as well
e to fadeIn an element, effectively it needs to be hidden first
e we hide our newly created note
e then we can set it to fadeIn when ready

e DEMO - travel notes - series 1

http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo7/

CSS Basics - complex selector - part 1

e our DOM will often become more complicated and detailed
e depth and complexity will require more complicated selectors as well
e lists and their list items are a good example

unordered first</1li>
unordered second</1i>
unordered third</1li>

ordered first</1li>
ordered second</1li>
ordered third</1li>

e two lists, one unordered and the other ordered

o style each list, and the list items using rulesets
ul {

border: 1px solid green;

}

ol {
border: 1px solid blue;

3

Demo - Complex Selectors - Part 1

e Demo - Complex Selectors Part 1

CSS Basics - complex selector - part 2

e add a ruleset for the list items, <1i>
e applying the same style properties to both types of lists
« more specific to apply a ruleset to each list item for the different lists

ul 1i {
color: blue;

3

ol 1i {
color: red;

« also be useful to set the background for specific list items in each list
1i {

background: #Dbbb;
by

e pseudoclass of nth-child to specify a style for the second, fourth &c. child in the list

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/

1i {

background: #ddd;

3

Demo - Complex Selectors - Part 2

e Demo - Complex Selectors Part 2

CSS Basics - complex selector - part 3

e style odd and even list items to create a useful alternating pattern

{
background: #bbb;

{
background: #ddd;

« select only certain list items, or rows in a table &c.
— e.g. every fourth list item, starting at the first one

1i {

background: green;

3

o for even and odd children we’re using the above with convenient shorthand
e other examples include

— last-child

— nth-last-child ()

— many others...

Demo - CSS Complex Selectors - Part 3

e Demo - Complex Selectors Part 3

HTML5, CSS, & JS - example - part 17
style and render notes

e we have some new notes in our app
e add some styling to help improve the look and feel of a note
e can set background colours, borders font styles...
o set differentiating colours for each alternate note
« allows us to try some pseudoclasses in the CSS
— specified paragraphs in the note-output section

.note-output p
background-color: #ccc;

b
.note-output p

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/

background-color: #eee;

}

DEMO - travel notes - series 1

HTMLS5, CSS, & JS - final thoughts

a basic app that records simple notes
many additional options we can add
some basic functionality is needed to make it useful
— autosave - otherwise we lose our data each time we refresh the browser
— edit a note
delete a note
— add author information
additional functionality might include
— save persistent data to DB, name/value pairs...
— organise and view collections of notes
— add images and other media
* local and APIs
— add contextual information
x again, local and APIs
— structure notes, media, into collection
— define related information
— search, sort...
— export options and sharing...
security, testing, design patterns

Video - Scotoma - Da Vinci Code
Scotoma - The Da Vinci Code - Source: YouTube

Image - HTML5, CSS, & JS - DOM recap

Image - Travel Notes - Series 1 - recap

HTMLS5, CSS, & JS - example - add-ons

new features and add-ons...

delete all notes
delete a single note
new event handlers
additional styling

http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo8/
https://www.youtube.com/watch?v=tfL5f6cZlk8

Figure 1: Travel Notes - DOM recap

travel notes

record notes from various cities and places visited...

add note

| add

have fun in St Tropez
ride the tram in Nice

play golf in Mougins

app's copyright information, additional links...

Figure 2: Travel Notes - Series 1 - Demo 8 recap

HTML5, CSS, & JS - Series 2 - part 1.2

let deleteAll = document.getElementById('notes-delete');

deleteAll.addEventListener('click', () => {
let notes = noteOutput.querySelectorAll('p');

for (let note of notes) {
note.remove() ;

delete option - all notes - plain js

» option to delete all notes from .note-output
e add a new toolbar for note controls and options
<section class="note-controls">

<button id="notes-delete">Delete all</button>
</section>

o then add some simple styling for this new toolbar

.note-controls {
margin: 10px O 10px O;
padding: 2px;
border-bottom: 1px solid #dedede;
display: none;

.note-controls button {
padding: 2px;
margin: 2px;
border-radius: 0;
border: 1px solid #dedede;

cursor: pointer;

Video - HTML5, CSS, & JS
display vs visibility CSS - Display versus Visibility - UP TO 1:46
Source - CSS Display and Visibility - YouTube

HTML5, CSS, & JS - example - part 2.2
delete option - all notes - plain js

e mnote controls toolbar is hidden, by default in the CSS
» need some way to check its visibility as we add our notes

https://www.youtube.com/watch?v=gVt4qcfNLto

— no notes, then the toolbar is not required
e use display property to check node

function checkVisible(node) {

if (node.style.display != 'block') {

node.style.display = 'block';

fadeIn(node) ;

o simply checking a passed element to see whether it is hidden
e can update this method later on to check hidden and visible
e call this function as required
e & usage with a defined node

let controls = document.getElementById('controls');

checkVisible(controls) ;

HTMLS5, CSS, & JS - example - part 2.3
delete option - all notes - plain js
e use visibility property to check node
function checkVisible(node) {
if (node.style.visibility = 'hidden') {

node.style.display = 'block';
node.style.visibility = 'visible';

fadeIn(node) ;
+

JS Core - more conditionals - part 1

o briefly considered conditional statements using the if statement,

if (a > b) {
console.log("a is the best...");

} else {
console.log("b is the best...");
}

e Switch statements effectively follow the same pattern as if statements
— designed to allow us to check for multiple values in a more succinct manner

— enable us to check and evaluate a given expression

— then attempt to match a required value against an available case
e addition of break is important, ensures only matched case is executed

— then the application breaks from the switch statement
e if no break execution after that case will continue

— commonly known as fall through

— may be an intentional feature of your code design

— allows a match against multiple possible cases

JS Core - switch conditional - example

var a = 4;

switch (a) {
case 3:

console.log("par 3");
break;
case 4:

console.log("par 4");
break;
case 5:

console.log("par 5");
break;
case b9:

console.log("record") ;
break;
default:
console.log("more practice");

JS Core - more conditionals - part 2
ternary

e a more concise way to write our conditional statements

e known as the ternary or conditional operator

e consider this operator a more concise form of standard if...else statement
59;
(a > 59) ? "high" : "low";

e equivalent to the following standard if...else statement

var a = 59;

if (a > 59) {

var b = "high";
} else {

10

var b = "low";

HTMLS5, CSS, & JS - example - part 4.2
JS code so far - plain JS

¢ add a note, the .note-controls toolbar is shown
— delete all button now becomes available to our users

let deleteAll = document.getElementById('notes-delete');

deleteAll.addEventListener('click', () => {
deleteAll.parentNode.style.display = 'none';
let notes = notelutput.querySelectorAll('p');
for (let note of notes) {

note.remove() ;

e hide parent node for controls...
e DEMO 1 - travel notes - series 2

Video - Fitts’ Law
mouse pointers and Fitts’ law Mouse Pointers & Fitts’s Law

Source - Mouse Pointers & Fitts’s Law - Computerphile - YouTube

HTMLS5, CSS, & JS - example - part 5
delete option - all notes

o still making an assumption notes exist in the note-output section
o add an additional function to check element exists in the DOM or not
e use length property

element.length

e new function for checking elements in the DOM

function checkExist(element) {
if (element.length) {

return true;
} else {
return false;

11

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo1/
https://www.youtube.com/watch?v=E3gS9tjACwU

}
}

HTML5, CSS, & JS - example - part 6.2

delete option - all notes - plain JS

o updated delete all notes option to include check for notes
e call checkExist() function in conditional statement

deleteAll.addEventListener('click',

let notes = noteOutput.querySelectorAll('p');

if (checkExist(notes) === true) {
deleteAll.parentNode.style.display = 'none';
for (let note of notes) {

note.remove() ;

« DEMO 2 - travel notes - series 2

Image - Travel Notes - Series 2 - demo 2

travel notes

record notes from various cities and places visited...

add note

add

Delete all

stroll along the Promenade des Anglais in Nice
lose money in Monaco
meet Picasso in Antibes

be seen in Cannes

app's copyright information, additional links...

Figure 3: Travel Notes - Series 2 - Demo 2

12

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo2/

Video - HTML5, CSS, & JS

white space / negative space - part 1 UI Design - How to use Negative Space in UI Design - UP TO
3:32

Source - UI Design - White space or Negative Space - YouTube

HTMLS5, CSS, & JS - example - part 7
delete option - per note

e consider adding a single delete option per note
o allowing a user to selectively delete their chosen note
— regardless of hierarchical position within the .note-output section
e design decisions for such an option might include
— do we offer a selection option, such as checkboxes, to select one or more delete items
— perhaps a single delete button per note
— a drag and drop to delete option
— there are many different ways to present and use this option
o programmatically follow a similar pattern for deletion of the note

HTMLS5, CSS, & JS - example - part 8.2
delete option - per note - plain js

e simply need to delete the selected note

— use the same remove() function for single and all notes
e add option per note to allow user to delete a required note
e add a delete button for each note

— add programmatically with each new note

function createButton(btnClass, btnTxt) {

let btnNode = document.createElement ('button');
let btnTxtNode = document.createTextNode (btnTxt) ;
btnNode.setAttribute('class', btnClass);

btnNode . appendChild (btnTxtNode) ;

return btnNode;

e new function allows us to create simple buttons as required

— a specified class and button text passed as parameters

— use function to build required delete button in createNote() function
e then call as required,

let delButton = createButton('note-delete', 'delete');

13

https://www.youtube.com/watch?v=A0Ev_4zto4Y

HTMLS5, CSS, & JS - example - part 9.2
delete option - per note - plain js

« append/prepend delete option to note
— before adding note to the DOM in createNote function

function createNote(input, output) {

let inputVal = input.value;

if (inputVal !'== '') {

let p = document.createElement('p');
let delButton = createButton('note-delete', 'delete');
p.prepend(delButton) ;
let noteText = document.createTextNode (inputVal) ;
p.appendChild(noteText) ;

output.appendChild(p);

input.value = '';

let controls = document.getElementById('app-controls');
checkVisible(controls);

Image - Travel Notes - Series 2 - demo 3

¢ DEMO 3 - travel notes - series 2

HTML5, CSS, & JS - example - part 11
delete option - per note

e now allow our users to delete a single note

 single note option is awkward at the moment

e simply allow a user to either mouseover or select a note to show additional options
— showing the available delete button

e enable a user to select their note of choice
— need to bind a click event to a note

 user selects a note
— no check for previous other visible delete buttons

14

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo3/

travel notes

record notes from various cities and places visited...

add note

| add

Delete all

breakfast in Antibes delste
lunch in Nice| delste

dinner in Monaco delete

app's copyright information, additional links...

Figure 4: Travel Notes - Series 2 - Demo 3

— ensure only delete button for selected note is shown

JS Core - functions and values

o variables acting as groups of code and blocks

e act as one of the primary mechanisms for scope within our JS applications
« also use functions as values

o effectively using them to set values for other variables

var a;

function scope() {
"use strict";
a = 49;
return a;

}

b = scope() * 2;
console.log(b);

« useful and interesting aspect of the JS language
— allows us to build values from multiple layers and sources

Image - HTML5, CSS, & JS - too many delete buttons

HTMLS5, CSS, & JS - example - part 12.1

delete option - per note

15

travel notes

record notes from various cities and places visited...

add note

add
Delete all
cannes note delete

nice note delets

monaco note delete

antibes note delete

app's copyright information, additional links...

Figure 5: Travel Notes - Week 6 - Too many delete buttons

e return to our earlier function, checkVisible()
o modify to allow better abstraction and usage
o modify to test for visibility

— then simply return a boolean value

function checkVisible(element) {

if (element.is(":hidden")) {

return true;
} else {
return false;
}
}

¢ also need to modify check for the .note-controls in createNote() function

if (checkVisible($(".note-controls")) === true) {

HTML5, CSS, & JS - example - part 12.2
delete option - per note - plain js

¢ note delete button

16

delButton.addEventListener('click', function () {
console.log('note delete...', this.parentNode);
this.parentNode.remove() ;

B

« note delete button with check for notes
— no notes - hide delete all option

delButton.addEventListener('click', function () {
console.log('note delete...', this.parentNode);
this.parentNode.remove() ;

let notes = output.querySelectorAll('p');
if (checkExist(notes) === false) {
controls.style.display = 'none';

e« DEMO 3 - travel notes - series 2 - plain JS

HTMLS5, CSS, & JS - example - part 13.2
delete option - per note - plain JS

o check for current delete buttons per note
— hide each delete button
— then, show delete button for current note...

p-addEventListener('click', function() {

let delBtns = output.querySelectorAll('.note-delete');
if (checkExist(delBtns) === true) {
for (let btn of delBtns) {

btn.style.display = 'none';

}
X
this.querySelector (' .note-delete').style.display = 'inline';

B

e bind handler for the user clicking on a note
e check whether other delete buttons are visible on any other notes
— if visible, we can simply hide these delete buttons
— then show the delete option for the currently selected note
o later abstract this function to handle other options associated with each note
— DEMO 4 - travel notes - series 2
— version 1
— version 2

17

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/

HTMLS5, CSS, & JS - example - part 14
style note(s)

o add some additional styling to our notes
— start with some changes to the design of each note
— then considered the overall .note-output section
e remove styling for alternating notes, set uniform style per note

.note-output p {
margin: 10px;

padding: 10px;
border: 1px solid #blc4bl;
cursor:pointer;

e need to add some styling for our delete button, and position it within each note

.note-output p button.note-delete {
display: block;
padding: 5px;
margin: 5px 5px 10px O;
border-radius: 0;
border: 1px solid #dedede;
cursor: pointer;

HTMLS5, CSS, & JS - example - part 15
style note(s)

e add some styling for the button’s hover pseudo-class
— acts as useful feedback to the user that the button is an active element

.note-output p button.note-delete
background-color: #aaa;
color: #fff;

e also consider adding some similar feedback to our note
— a sign of active as the user moves their mouse cursor over each note

.note-output p {

border: 1px solid #1a3852;
by

e DEMO 5 - travel notes - series 2
— version 1
— version 2

18

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/

HTMLS5, CSS, & JS - example - part 16
style note(s)

e a couple of issues that still need to be fixed in the application
— first issue is lack of consistency in styling our buttons

o fixed by abstracting our CSS styling for a default button
— specific button styles can be added later

button {
padding: 2px;
margin: 2px;

border-radius: 0;
border: 1px solid #dedede;
cursor: pointer;

o removed the need for a ruleset to style the button for
— adding a note, delete all notes, and the single delete button per note

HTML5, CSS, & JS - example - part 17
style note(s)

 also create a default ruleset for a button hover pseudo-class
— again reducing our need for repetition in the stylesheet

button {

background-color: #aaa;
color: #fff;

e iterative development is fine
— continue to abstract styles, overall design, and logic as we develop an application

HTMLS5, CSS, & JS - example - part 19
a few extras to consider...

e alternative layouts
— grid
— squares
— snippet view
— table
— lists...
« notifications
e snippets with expansion
e split views
— note snippet with contextual/media per note...
e drag and drop delete
o filters
e sort options
o tags

19

e much, much more...

Image - Square notes - a bit of fun

travel notes

record notes from various cities and places visited...

add note
add
Delete all
cannes nice monaco antibes frejus
st tropez eze

app's copyright information, additional links...

Figure 6: Travel Notes - Week 6 - Squares

e« DEMO - travel notes - squares

Video - HTML5, CSS, & JS

white space / negative space - part 2 UI Design - How to use Negative Space in UI Design - UP TO
5:17

Source - UI Design - White space or Negative Space - YouTube

JS extras - best practices - part 1
a few best practices...
variables

¢ limit use of global variables in JavaScript
— easy to override

20

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo-squares/
https://www.youtube.com/watch?v=A0Ev_4zto4Y

— can lead to unexpected errors and issues

— should be replaced with appropriate local variables, closures
« local variables should always be declared with keyword var

— avoids automatic global variable issue

declarations

e add all required declarations at the top of the appropriate script or file
— provides cleaner, more legible code
— helps to avoid unnecessary global variables
— avoid unwanted re-declarations

types and objects

e avoid declaring numbers, strings, or booleans as objects
e treat more correctly as primitive values

— helps increase the performance of our code

— decrease the possibility for issues and bugs

JS extras - best practices - part 2
type conversions and coercion

o weakly typed nature of JS

— important to avoid accidentally converting one type to another

— converting a number to a string or mixing types to create a NaN (Not a Number)
o often get a returned value set to NaN instead of generating an error

— try to subtract one string from another may result in NaN

comparison
e better to try and work with === instead of ==
— == tries to coerce a matching type before comparison
— === forces comparison of values and type
defaults

e when parameters are required by a function
— function call with a missing argument can lead to it being set as undefined
— good coding practice to assign default values to arguments
— helps prevent issues and bugs

switches

e consider a default for the switch conditional statement
e ensure you always set a default to end a switch statement

JS extras - performance - part 1
loops

e try to limit the number of calculations, executions, statements performed per loop iteration
e check loop statements for assignments and statements

— those checked or executed once

— rather than each time a loop iterates
e« for loop is a standard example of this type of quick optimisation

21

for (i = 0; i < arr.length; i++) {

}

1 = arr.length;
for (i = 0; i < 1; i++) {

e source - W3

JS extras - performance - part 2
DOM access

e repetitive DOM access can be slow, and resource intensive
e try to limit the number of times code needs to access the DOM
e simply access once and then use as a local variable

var testDiv = document.getElementById('test');

testDiv.innerHTML = "test...";

JavaScript loading

e not always necessary to place JS files in the <head> element
— check context, in particular for recent mobile and desktop frameworks
x Cordova, Electron...
« adding JS scripts to end of the page’s body
— allows browser to load the page first
e HTTP specification defines browsers should not download more than two components in parallel

JS Core - objects - part 1
Objects

e object type includes a compound value

— JS can use to set properties, or named locations
e each of these properties holds its own value

— can be defined as any type

var objectA = {
a: 49,
b: 59,

c: "Philae"

};

e access these values using either dot or bracket notation

objectA.a;

objectA["a"];

22

http://www.w3schools.com/js/js_performance.asp

JS Core - objects - example

var object = {
archive: 'waldzell',
access: 'castalia',
purpose: 'gaming'

};

console.log(archive is ${object.archive});

console.log(access is restricted to ${object[1]}7);

console.log(purpose is ${object['purpose']l});

Image - JS Object

I I
I I
a: 49 | b: 59 | c: "Philae"
I I
I I

Figure 7: JS Object

ES6 - template literals

var object = {
archive: 'waldzell',
access: 'castalia',

purpose: 'gaming'

3

23

console.log(archive is ${object.archive});

console.log('archive is ' + object.archive);

console.log(archive = ${object.archive}, access = ${object.access}, purpose = ${object.p

console.log('archive = ' + object.archive + ', access = ' + object.access + ' purpose = '

JS Core - objects - part 2
Arrays

e JS array an object that contains values, of any type, in numerically indexed positions
— store a number, a string...
— array will start at index position 0
— increments by I for each new value
e arrays can also have properties
— e.g. automatically updated length property

var arrayA = [
49,
59,
"Philae"
1;
arrayA.length;

e each value can be retrieved from its applicable index position

arrayA[2];

Image - JS Array

JS Core - objects - Arrays
examples

o Random Greeting Generator - Basic

CSS Basics - box model - part 1

e consideration of the CSS box model
e a document’s attempt to represent each element as a rectangular box
e boxes and properties determined by browser rendering engine
o browser calculates size, properties, and position of these required boxes
e properties can include, for example,
— colour, background features, borders, width, height...
e box model designed to describe an element’s required space and content

24

http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-basic/

49 59 2: "Philae"

=

=

Figure 8: JS Array

o each box has a series of edges,
— margin edge
— border edge
— padding edge
— content edge

CSS Basics - box model - part 2
Content
e box’s content area describes element’s actual content
o properties can include color , background , img ..
— apply inside the content edge

e dimensions include content width and content-height
 content size properties (assuming that the box-sizing property remains default) include,

— width , min-width , max-width , height , min-height , max-height

Demo - CSS Box Model
e Demo - CSS Box Model

CSS Basics - box model - part 3
Padding

e box’s padding area includes the extent of the padding to the surrounding border
e background, colour etc properties for a content area extend into the padding
— we often consider the padding as extending the content
e padding itself is located in the box’s padding edge
e dimensions are the width and height of the padding-box.

25

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo2/

e control space between padding and content edge using the following properties,
— padding-top , padding-right , padding-bottom , padding-left

— padding (sizes calculated clock-wise)

Demo - CSS Box Model - Padding
« JSFiddle - CSS Box Model

CSS Basics - box model - part 4
Border

e border area extends padding area to area containing the borders
e it becomes the area inside the border edge
¢ define its dimensions as the width and height of the border-box
e calculated area depends upon the width of the border we set in the CSS
o set size of our border using the following properties in CSS,
— border-width
— border

Demo - CSS Box Model - Border
« JSFiddle - CSS Box Model

CSS Basics - box model - part 5
Margin

e margin area can extend this border area with an empty area

— useful to create a defined separation of one element from its neighbours
o dimensions of area defined as width and height of the margin-box
e control size of our margin area using the following properties,

— margin-top , margin-right , margin-bottom , margin-left

— margin (sizes calculated clock-wise)

Demo - CSS Box Model - Margin
» JSFiddle - CSS Box Model

Demo - CSS Box Model
¢ Demo - CSS Box Model

26

https://jsfiddle.net/62dax3zL/
https://jsfiddle.net/62dax3zL/
https://jsfiddle.net/62dax3zL/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo2/

margin edge

width

padding edge

Figure 9: CSS Box Model

27

Image - CSS Box Model
Source - MDN - CSS Box Model

Demo - CSS Box Model - Interactive

o interactive Box Model

Demos
CSS

e CSS - Complex Selectors Part 1
e CSS - Complex Selectors Part 2
e CSS - Complex Selectors Part 3

Travel Notes - series 1

¢ travel notes - demo 6
¢ travel notes - demo 7
¢ travel notes - demo 8

Travel notes app - series 2 - option 1

e travel notes - demo 1
e travel notes - demo 2
e travel notes - demo 3
e travel notes - demo 4
e travel notes - demo 5
« travel notes - demo 6

Travel notes app - series 2 - options 2 - plain JS

e travel notes - plain JS - demo 3
« travel notes - plain JS - demo 4
e travel notes - plain JS - demo 5

Resources

o CSS
— (CSS Box Model
— MDN - CSS Box Model
— CSS Selectors
e JS
— MDN - JS
— JS Info - DOM Nodes
x MDN - JS Objects
* W3 Schools - JS

28

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/box-model/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo7/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo8/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo1
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo2
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo3
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo4
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo5
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo6
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://javascript.info/dom-nodes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
http://www.w3schools.com/js/default.asp

	JS Core - checking equality - part 1
	JS Core - checking equality - part 2
	JS Core - checking inequality - part 1
	JS Core - checking inequality - part 2
	HTML5, CSS, & JS - example - part 14
	HTML5, CSS, & JS - example - part 15
	HTML5, CSS, & JS - example - part 16
	CSS Basics - complex selector - part 1
	Demo - Complex Selectors - Part 1
	CSS Basics - complex selector - part 2
	Demo - Complex Selectors - Part 2
	CSS Basics - complex selector - part 3
	Demo - CSS Complex Selectors - Part 3
	HTML5, CSS, & JS - example - part 17
	HTML5, CSS, & JS - final thoughts
	Video - Scotoma - Da Vinci Code
	Image - HTML5, CSS, & JS - DOM recap
	Image - Travel Notes - Series 1 - recap
	HTML5, CSS, & JS - example - add-ons
	HTML5, CSS, & JS - Series 2 - part 1.2
	Video - HTML5, CSS, & JS
	HTML5, CSS, & JS - example - part 2.2
	HTML5, CSS, & JS - example - part 2.3
	JS Core - more conditionals - part 1
	JS Core - switch conditional - example
	JS Core - more conditionals - part 2
	HTML5, CSS, & JS - example - part 4.2
	Video - Fitts’ Law
	HTML5, CSS, & JS - example - part 5
	HTML5, CSS, & JS - example - part 6.2
	Image - Travel Notes - Series 2 - demo 2
	Video - HTML5, CSS, & JS
	HTML5, CSS, & JS - example - part 7
	HTML5, CSS, & JS - example - part 8.2
	HTML5, CSS, & JS - example - part 9.2
	Image - Travel Notes - Series 2 - demo 3
	HTML5, CSS, & JS - example - part 11
	JS Core - functions and values
	Image - HTML5, CSS, & JS - too many delete buttons
	HTML5, CSS, & JS - example - part 12.1
	HTML5, CSS, & JS - example - part 12.2
	HTML5, CSS, & JS - example - part 13.2
	HTML5, CSS, & JS - example - part 14
	HTML5, CSS, & JS - example - part 15
	HTML5, CSS, & JS - example - part 16
	HTML5, CSS, & JS - example - part 17
	HTML5, CSS, & JS - example - part 19
	Image - Square notes - a bit of fun
	Video - HTML5, CSS, & JS
	JS extras - best practices - part 1
	JS extras - best practices - part 2
	JS extras - performance - part 1
	JS extras - performance - part 2
	JS Core - objects - part 1
	JS Core - objects - example
	Image - JS Object
	ES6 - template literals
	JS Core - objects - part 2
	Image - JS Array
	JS Core - objects - Arrays
	CSS Basics - box model - part 1
	CSS Basics - box model - part 2
	Demo - CSS Box Model
	CSS Basics - box model - part 3
	Demo - CSS Box Model - Padding
	CSS Basics - box model - part 4
	Demo - CSS Box Model - Border
	CSS Basics - box model - part 5
	Demo - CSS Box Model - Margin
	Demo - CSS Box Model
	Image - CSS Box Model
	Demo - CSS Box Model - Interactive
	Demos
	Resources

