
Comp 324/424 - Client-side Web Design

Spring Semester 2024 Week 7

Dr Nick Hayward

JS Core - checking equality - part 1

• JS has four equality operators, including two not equal
– == , === , != , !==

• == - checks for value equality, whilst allowing coercion
• === - checks for value equality but without coercion

var a = 49;
var b = "49";

console.log(a == b); //returns true
console.log(a === b); //returns false

• first comparison checks values
– if necessary, try to coerce one or both values until a match occurs
– allows JS to perform a simple equality check
– results in true

• second check is simpler
– coercion is not permitted, and a simple equality check is performed
– results in false

JS Core - checking equality - part 2

• which comparison operator should we use
• useful suggestions for usage of comparison operators

– use === if either side of the comparison could be true or false
– use === if either value could be one of the following specific values,

∗ 0 , "" , []
– otherwise, it’s safe to use ==
– simplify code in a JS application due to the implicit coercion.

• not equal counterparts, ! and !== work in a similar manner

JS Core - checking inequality - part 1

• known as relational comparison, we can use the inequality operators,
– < , > , <= , >=

• inequality operators often used to check comparable values like numbers
– inherent ordinal check

• can be used to compare strings

1

"hello" < "world"

• coercion also occurs with inequality operators
– no concept of strict inequality

var a = 49;
var b = "59";
var c = "69";

a < b; //returns true
b < c; //returns true

JS Core - checking inequality - part 2

• we can encounter an issue when either value cannot be coerced into a number
var a = 49;
var b = "nice";

a < b; //returns false
a > b; //returns false
a == b; //returns false

• issue for < and > is string is being coerced into invalid number value, NaN
• == coerces string to NaN and we get comparison between 49 == NaN

HTML5, CSS, & JS - example - part 14

interaction - add a note - abstract code

• need to create a new function to abstract
– creation and output of a new note
– manage the input field for our note app

• moving logic from button click function to separate, abstracted function
• then call this function as needed

– for a button click or keyboard press
– then create and render the new note

// create a note
// - input = value from input field
// - output = DOM node for output of new note
function createNote(input, output) {

// create p node
let p = document.createElement('p');
// get value from input field for note
let inputVal = input.value;
// check input value
if (inputVal !== '') {
// create text node
let noteText = document.createTextNode(inputVal);
// append text to paragraph
p.appendChild(noteText);
// append new paragraph and text to existing note output
output.appendChild(p);

2

// clear input text field
input.value = '';

}
}

HTML5, CSS, & JS - example - part 15

function travelNotes() {
"use strict";

// get a reference to `.note_output` in the DOM
let noteOutput = document.querySelector('.note-output');
// add note button
let addNoteBtn = document.getElementById('add-note');
// input field for add note
let inputNote = document.getElementById('input-note');

// add event listener to add note button
addNoteBtn.addEventListener('click', () => {

createNote(inputNote, noteOutput);
});

// add event listener for keypress in note input field
inputNote.addEventListener('keypress', (e) => {
// check key pressed by code - 13 - return
if (e.keyCode === 13) {
createNote(inputNote, noteOutput);

}
});

}

// load app
travelNotes();

interaction - add a note - plain JS

• DEMO - travel notes - series 1

HTML5, CSS, & JS - example - part 16

interaction - add a note - animate

• JavaScript well-known for is its simple ability to animate elements
• many built-in effects available in various JS animation libraries

– build our own as well
• to fadeIn an element, effectively it needs to be hidden first
• we hide our newly created note
• then we can set it to fadeIn when ready

– …
• DEMO - travel notes - series 1

3

http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo7/

CSS Basics - complex selector - part 1

• our DOM will often become more complicated and detailed
• depth and complexity will require more complicated selectors as well
• lists and their list items are a good example

unordered first
unordered second
unordered third

ordered first
ordered second
ordered third

• two lists, one unordered and the other ordered
• style each list, and the list items using rulesets

ul {
border: 1px solid green;

}
ol {
border: 1px solid blue;

}

Demo - Complex Selectors - Part 1

• Demo - Complex Selectors Part 1

CSS Basics - complex selector - part 2

• add a ruleset for the list items,
• applying the same style properties to both types of lists
• more specific to apply a ruleset to each list item for the different lists

ul li {
color: blue;

}
ol li {
color: red;

}

• also be useful to set the background for specific list items in each list
li:first-child {
background: #bbb;

}

• pseudoclass of nth-child to specify a style for the second, fourth &c. child in the list

4

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/

li:nth-child(2) {
background: #ddd;

}

Demo - Complex Selectors - Part 2

• Demo - Complex Selectors Part 2

CSS Basics - complex selector - part 3

• style odd and even list items to create a useful alternating pattern
li:nth-child(odd) {
background: #bbb;

}
li:nth-child(even) {
background: #ddd;

}

• select only certain list items, or rows in a table &c.
– e.g. every fourth list item, starting at the first one

li:nth-child(4n+1) {
background: green;

}

• for even and odd children we’re using the above with convenient shorthand
• other examples include

– last-child
– nth-last-child()
– many others…

Demo - CSS Complex Selectors - Part 3

• Demo - Complex Selectors Part 3

HTML5, CSS, & JS - example - part 17

style and render notes

• we have some new notes in our app
• add some styling to help improve the look and feel of a note
• can set background colours, borders font styles…
• set differentiating colours for each alternate note
• allows us to try some pseudoclasses in the CSS

– specified paragraphs in the note-output section
.note-output p:nth-child(even) {
background-color: #ccc;

}
.note-output p:nth-child(odd) {

5

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/

background-color: #eee;
}

• DEMO - travel notes - series 1

HTML5, CSS, & JS - final thoughts

• a basic app that records simple notes
• many additional options we can add
• some basic functionality is needed to make it useful

– autosave - otherwise we lose our data each time we refresh the browser
– edit a note
– delete a note
– add author information

• additional functionality might include
– save persistent data to DB, name/value pairs…
– organise and view collections of notes
– add images and other media

∗ local and APIs
– add contextual information

∗ again, local and APIs
– structure notes, media, into collection
– define related information
– search, sort…
– export options and sharing…

• security, testing, design patterns

Video - Scotoma - Da Vinci Code

Scotoma - The Da Vinci Code - Source: YouTube

Image - HTML5, CSS, & JS - DOM recap

Image - Travel Notes - Series 1 - recap

HTML5, CSS, & JS - example - add-ons

new features and add-ons…

• delete all notes
• delete a single note
• new event handlers
• additional styling

6

http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo8/
https://www.youtube.com/watch?v=tfL5f6cZlk8

Figure 1: Travel Notes - DOM recap

Figure 2: Travel Notes - Series 1 - Demo 8 recap

7

HTML5, CSS, & JS - Series 2 - part 1.2

// delete all notes button
let deleteAll = document.getElementById('notes-delete');

// add event listener for delete all notes...
deleteAll.addEventListener('click', () => {

// get notes from DOM
let notes = noteOutput.querySelectorAll('p');
// loop through notes and remove a single note per iteration...
for (let note of notes) {

note.remove();
}

});

delete option - all notes - plain js

• option to delete all notes from .note-output
• add a new toolbar for note controls and options

<section class="note-controls">
<button id="notes-delete">Delete all</button>

</section>

• then add some simple styling for this new toolbar
/* note controls */
.note-controls {
margin: 10px 0 10px 0;
padding: 2px;
border-bottom: 1px solid #dedede;
display: none;

}
/* simplify default button styles for note controls */
.note-controls button {
padding: 2px;
margin: 2px;
border-radius: 0;
border: 1px solid #dedede;
cursor: pointer;

}

Video - HTML5, CSS, & JS

display vs visibility CSS - Display versus Visibility - UP TO 1:46

Source - CSS Display and Visibility - YouTube

HTML5, CSS, & JS - example - part 2.2

delete option - all notes - plain js

• note controls toolbar is hidden, by default in the CSS
• need some way to check its visibility as we add our notes

8

https://www.youtube.com/watch?v=gVt4qcfNLto

– no notes, then the toolbar is not required
• use display property to check node

// check visibility of passed node
function checkVisible(node) {

// check passed node's current visibility
if (node.style.display != 'block') {

// show in DOM to allow fadeIn...
node.style.display = 'block';
// call fadeIn for node in DOM
fadeIn(node);

}
}

• simply checking a passed element to see whether it is hidden
• can update this method later on to check hidden and visible
• call this function as required
• & usage with a defined node

// define node to check...
let controls = document.getElementById('controls');
// call function
checkVisible(controls);

HTML5, CSS, & JS - example - part 2.3

delete option - all notes - plain js

• use visibility property to check node
// check visibility of passed node
function checkVisible(node) {

// check passed node's current visibility
if (node.style.visibility = 'hidden') {
// show in DOM to allow fadeIn...
node.style.display = 'block';
node.style.visibility = 'visible';
// call fadeIn type animation &c. for node in DOM
fadeIn(node);
}

}

JS Core - more conditionals - part 1

• briefly considered conditional statements using the if statement,
if (a > b) {
console.log("a is the best...");
} else {
console.log("b is the best...");
}

• Switch statements effectively follow the same pattern as if statements
– designed to allow us to check for multiple values in a more succinct manner

9

– enable us to check and evaluate a given expression
– then attempt to match a required value against an available case

• addition of break is important, ensures only matched case is executed
– then the application breaks from the switch statement

• if no break execution after that case will continue
– commonly known as fall through
– may be an intentional feature of your code design
– allows a match against multiple possible cases

JS Core - switch conditional - example

var a = 4;

switch (a) {
case 3:
//par 3
console.log("par 3");
break;

case 4:
//par 4
console.log("par 4");
break;

case 5:
//par 5
console.log("par 5");
break;

case 59:
//dream score
console.log("record");
break;

default:
console.log("more practice");

}

JS Core - more conditionals - part 2

ternary

• a more concise way to write our conditional statements
• known as the ternary or conditional operator
• consider this operator a more concise form of standard if...else statement

var a = 59;
var b = (a > 59) ? "high" : "low";

• equivalent to the following standard if...else statement
var a = 59;

if (a > 59) {
var b = "high";

} else {

10

var b = "low";
}

HTML5, CSS, & JS - example - part 4.2

JS code so far - plain JS

• add a note, the .note-controls toolbar is shown
– delete all button now becomes available to our users

// delete all notes button
let deleteAll = document.getElementById('notes-delete');

// add event listener for delete all notes...
deleteAll.addEventListener('click', () => {

// hide parent controls node...
deleteAll.parentNode.style.display = 'none';
// get notes from DOM
let notes = noteOutput.querySelectorAll('p');
// loop through notes and remove a single note per iteration...
for (let note of notes) {

// remove single node
note.remove();

}
});

• hide parent node for controls…
• DEMO 1 - travel notes - series 2

Video - Fitts’ Law

mouse pointers and Fitts’ law Mouse Pointers & Fitts’s Law

Source - Mouse Pointers & Fitts’s Law - Computerphile - YouTube

HTML5, CSS, & JS - example - part 5

delete option - all notes

• still making an assumption notes exist in the note-output section
• add an additional function to check element exists in the DOM or not
• use length property

element.length

• new function for checking elements in the DOM
//check elements exists
function checkExist(element) {
if (element.length) {
return true;

} else {
return false;

11

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo1/
https://www.youtube.com/watch?v=E3gS9tjACwU

}
}

HTML5, CSS, & JS - example - part 6.2

delete option - all notes - plain JS

• updated delete all notes option to include check for notes
• call checkExist() function in conditional statement

// add event listener for delete all notes...
deleteAll.addEventListener('click', () => {

// get notes from DOM
let notes = noteOutput.querySelectorAll('p');
// check notes in DOM
if (checkExist(notes) === true) {

// hide parent controls node...
deleteAll.parentNode.style.display = 'none';
// loop through notes and remove a single note per iteration...
for (let note of notes) {

// remove single node
note.remove();

}
}

});

• DEMO 2 - travel notes - series 2

Image - Travel Notes - Series 2 - demo 2

Figure 3: Travel Notes - Series 2 - Demo 2

12

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo2/

Video - HTML5, CSS, & JS

white space / negative space - part 1 UI Design - How to use Negative Space in UI Design - UP TO
3:32

Source - UI Design - White space or Negative Space - YouTube

HTML5, CSS, & JS - example - part 7

delete option - per note

• consider adding a single delete option per note
• allowing a user to selectively delete their chosen note

– regardless of hierarchical position within the .note-output section
• design decisions for such an option might include

– do we offer a selection option, such as checkboxes, to select one or more delete items
– perhaps a single delete button per note
– a drag and drop to delete option
– there are many different ways to present and use this option

• programmatically follow a similar pattern for deletion of the note

HTML5, CSS, & JS - example - part 8.2

delete option - per note - plain js

• simply need to delete the selected note
– use the same remove() function for single and all notes

• add option per note to allow user to delete a required note
• add a delete button for each note

– add programmatically with each new note
// create button element - pass class and text
function createButton(btnClass, btnTxt) {

// create button node
let btnNode = document.createElement('button');
// create button text node
let btnTxtNode = document.createTextNode(btnTxt);
// set attribute on button node
btnNode.setAttribute('class', btnClass);
// append text to button
btnNode.appendChild(btnTxtNode);
// return new button node with text and attribute...
return btnNode;

}

• new function allows us to create simple buttons as required
– a specified class and button text passed as parameters
– use function to build required delete button in createNote() function

• then call as required,
// create delete button for note
let delButton = createButton('note-delete', 'delete');

13

https://www.youtube.com/watch?v=A0Ev_4zto4Y

HTML5, CSS, & JS - example - part 9.2

delete option - per note - plain js

• append/prepend delete option to note
– before adding note to the DOM in createNote function

function createNote(input, output) {
// get value from input field for note
let inputVal = input.value;

// check input value
if (inputVal !== '') {
// create p node
let p = document.createElement('p');

// create delete button for note
let delButton = createButton('note-delete', 'delete');
// prepend button to note
p.prepend(delButton);
// create text node
let noteText = document.createTextNode(inputVal);
// append text to paragraph
p.appendChild(noteText);
// append new paragraph and text to existing note output
output.appendChild(p);
// call custom animation for fade in...
//fadeIn(p);
// clear input text field
input.value = '';

}

let controls = document.getElementById('app-controls');
checkVisible(controls);

}

Image - Travel Notes - Series 2 - demo 3

• DEMO 3 - travel notes - series 2

HTML5, CSS, & JS - example - part 11

delete option - per note

• now allow our users to delete a single note
• single note option is awkward at the moment
• simply allow a user to either mouseover or select a note to show additional options

– showing the available delete button
• enable a user to select their note of choice

– need to bind a click event to a note
• user selects a note

– no check for previous other visible delete buttons

14

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo3/

Figure 4: Travel Notes - Series 2 - Demo 3

– ensure only delete button for selected note is shown

JS Core - functions and values

• variables acting as groups of code and blocks
• act as one of the primary mechanisms for scope within our JS applications
• also use functions as values
• effectively using them to set values for other variables

var a;

function scope() {
"use strict";
a = 49;

return a;
}

b = scope() * 2;
console.log(b);

• useful and interesting aspect of the JS language
– allows us to build values from multiple layers and sources

Image - HTML5, CSS, & JS - too many delete buttons

HTML5, CSS, & JS - example - part 12.1

delete option - per note

15

Figure 5: Travel Notes - Week 6 - Too many delete buttons

• return to our earlier function, checkVisible()
• modify to allow better abstraction and usage
• modify to test for visibility

– then simply return a boolean value
//check element visibility - expects single element relative to display:none
function checkVisible(element) {
//check if element is hidden or not
if (element.is(":hidden")) {
return true;

} else {
return false;

}
}

• also need to modify check for the .note-controls in createNote() function
...
//check visibility of note controls
if (checkVisible($(".note-controls")) === true) {

// animate showing of note controls...
}
...

HTML5, CSS, & JS - example - part 12.2

delete option - per note - plain js

• note delete button

16

// add delete button for current note
// use anonymous FN instead of arrow FN
// this binds to clicked DOM node
delButton.addEventListener('click', function () {

console.log('note delete...', this.parentNode);
this.parentNode.remove();

});

• note delete button with check for notes
– no notes - hide delete all option

// add delete button for current note
// use anonymous FN instead of arrow FN
// this binds to clicked DOM node
delButton.addEventListener('click', function () {

console.log('note delete...', this.parentNode);
this.parentNode.remove();
// get notes from DOM
let notes = output.querySelectorAll('p');
if (checkExist(notes) === false) {

controls.style.display = 'none';
}

});

• DEMO 3 - travel notes - series 2 - plain JS

HTML5, CSS, & JS - example - part 13.2

delete option - per note - plain JS

• check for current delete buttons per note
– hide each delete button
– then, show delete button for current note…

// click listener for note
p.addEventListener('click', function() {

// get notes delete buttons from DOM
let delBtns = output.querySelectorAll('.note-delete');
if (checkExist(delBtns) === true) {

for (let btn of delBtns) {
btn.style.display = 'none';

}
}
this.querySelector('.note-delete').style.display = 'inline';

});

• bind handler for the user clicking on a note
• check whether other delete buttons are visible on any other notes

– if visible, we can simply hide these delete buttons
– then show the delete option for the currently selected note

• later abstract this function to handle other options associated with each note
– DEMO 4 - travel notes - series 2
– version 1
– version 2

17

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/

HTML5, CSS, & JS - example - part 14

style note(s)

• add some additional styling to our notes
– start with some changes to the design of each note
– then considered the overall .note-output section

• remove styling for alternating notes, set uniform style per note
/* note paragraph output */
.note-output p {
margin: 10px;
padding: 10px;
border: 1px solid #b1c4b1;
cursor:pointer;

}

• need to add some styling for our delete button, and position it within each note
/* note delete button */
.note-output p button.note-delete {
display: block;
padding: 5px;
margin: 5px 5px 10px 0;
border-radius: 0;
border: 1px solid #dedede;
cursor: pointer;

}

HTML5, CSS, & JS - example - part 15

style note(s)

• add some styling for the button’s hover pseudo-class
– acts as useful feedback to the user that the button is an active element

.note-output p button.note-delete:hover {
background-color: #aaa;
color: #fff;

}

• also consider adding some similar feedback to our note
– a sign of active as the user moves their mouse cursor over each note

/* note paragraph output hover */
.note-output p:hover {
border: 1px solid #1a3852;

}

• DEMO 5 - travel notes - series 2
– version 1
– version 2

18

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/

HTML5, CSS, & JS - example - part 16

style note(s)

• a couple of issues that still need to be fixed in the application
– first issue is lack of consistency in styling our buttons

• fixed by abstracting our CSS styling for a default button
– specific button styles can be added later

/* default button style */
button {
padding: 2px;
margin: 2px;
border-radius: 0;
border: 1px solid #dedede;
cursor: pointer;

}

• removed the need for a ruleset to style the button for
– adding a note, delete all notes, and the single delete button per note

HTML5, CSS, & JS - example - part 17

style note(s)

• also create a default ruleset for a button hover pseudo-class
– again reducing our need for repetition in the stylesheet

/* default button hover style */
button:hover {
background-color: #aaa;
color: #fff;

}

• iterative development is fine
– continue to abstract styles, overall design, and logic as we develop an application

HTML5, CSS, & JS - example - part 19

a few extras to consider…

• alternative layouts
– grid
– squares
– snippet view
– table
– lists…

• notifications
• snippets with expansion
• split views

– note snippet with contextual/media per note…
• drag and drop delete
• filters
• sort options
• tags

19

• much, much more…

Image - Square notes - a bit of fun

Figure 6: Travel Notes - Week 6 - Squares

• DEMO - travel notes - squares

Video - HTML5, CSS, & JS

white space / negative space - part 2 UI Design - How to use Negative Space in UI Design - UP TO
5:17

Source - UI Design - White space or Negative Space - YouTube

JS extras - best practices - part 1

a few best practices…

variables

• limit use of global variables in JavaScript
– easy to override

20

http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo-squares/
https://www.youtube.com/watch?v=A0Ev_4zto4Y

– can lead to unexpected errors and issues
– should be replaced with appropriate local variables, closures

• local variables should always be declared with keyword var
– avoids automatic global variable issue

declarations

• add all required declarations at the top of the appropriate script or file
– provides cleaner, more legible code
– helps to avoid unnecessary global variables
– avoid unwanted re-declarations

types and objects

• avoid declaring numbers, strings, or booleans as objects
• treat more correctly as primitive values

– helps increase the performance of our code
– decrease the possibility for issues and bugs

JS extras - best practices - part 2

type conversions and coercion

• weakly typed nature of JS
– important to avoid accidentally converting one type to another
– converting a number to a string or mixing types to create a NaN (Not a Number)

• often get a returned value set to NaN instead of generating an error
– try to subtract one string from another may result in NaN

comparison

• better to try and work with === instead of ==
– == tries to coerce a matching type before comparison
– === forces comparison of values and type

defaults

• when parameters are required by a function
– function call with a missing argument can lead to it being set as undefined
– good coding practice to assign default values to arguments
– helps prevent issues and bugs

switches

• consider a default for the switch conditional statement
• ensure you always set a default to end a switch statement

JS extras - performance - part 1

loops

• try to limit the number of calculations, executions, statements performed per loop iteration
• check loop statements for assignments and statements

– those checked or executed once
– rather than each time a loop iterates

• for loop is a standard example of this type of quick optimisation

21

// bad
for (i = 0; i < arr.length; i++) {
...
}
// good
l = arr.length;
for (i = 0; i < l; i++) {
...
}

• source - W3

JS extras - performance - part 2

DOM access

• repetitive DOM access can be slow, and resource intensive
• try to limit the number of times code needs to access the DOM
• simply access once and then use as a local variable

var testDiv = document.getElementById('test');
testDiv.innerHTML = "test...";

JavaScript loading

• not always necessary to place JS files in the <head> element
– check context, in particular for recent mobile and desktop frameworks

∗ Cordova, Electron…
• adding JS scripts to end of the page’s body

– allows browser to load the page first
• HTTP specification defines browsers should not download more than two components in parallel

JS Core - objects - part 1

Objects

• object type includes a compound value
– JS can use to set properties, or named locations

• each of these properties holds its own value
– can be defined as any type

var objectA = {
a: 49,
b: 59,
c: "Philae"

};

• access these values using either dot or bracket notation
//dot notation
objectA.a;
//bracket notation
objectA["a"];

22

http://www.w3schools.com/js/js_performance.asp

JS Core - objects - example

// create object
var object = {
archive: 'waldzell',
access: 'castalia',
purpose: 'gaming'

};

// log output with dot notation
console.log(`archive is ${object.archive}`);

// log output with bracket notation - returns undefined
console.log(`access is restricted to ${object[1]}`);

// log output with bracket notation
console.log(`purpose is ${object['purpose']}`);

Image - JS Object

Figure 7: JS Object

ES6 - template literals

// create object
var object = {
archive: 'waldzell',
access: 'castalia',
purpose: 'gaming'

};

// log output with template literals

23

console.log(`archive is ${object.archive}`);

// log output
console.log('archive is ' + object.archive);

// log output all object properties with template literals
console.log(`archive = ${object.archive}, access = ${object.access}, purpose = ${object.purpose}`);

// log output all object properties
console.log('archive = ' + object.archive + ', access = ' + object.access + ' purpose = ' + object.purpose);

JS Core - objects - part 2

Arrays

• JS array an object that contains values, of any type, in numerically indexed positions
– store a number, a string…
– array will start at index position 0
– increments by 1 for each new value

• arrays can also have properties
– e.g. automatically updated length property

var arrayA = [
49,
59,
"Philae"

];
arrayA.length; //returns 3

• each value can be retrieved from its applicable index position
arrayA[2]; //returns the string "Philae"

Image - JS Array

JS Core - objects - Arrays

examples

• Random Greeting Generator - Basic

CSS Basics - box model - part 1

• consideration of the CSS box model
• a document’s attempt to represent each element as a rectangular box
• boxes and properties determined by browser rendering engine
• browser calculates size, properties, and position of these required boxes
• properties can include, for example,

– colour, background features, borders, width, height…
• box model designed to describe an element’s required space and content

24

http://linode4.cs.luc.edu/teaching/cs/demos/125/various/random-greeting-basic/

Figure 8: JS Array

• each box has a series of edges,
– margin edge
– border edge
– padding edge
– content edge

CSS Basics - box model - part 2

Content

• box’s content area describes element’s actual content
• properties can include color , background , img …

– apply inside the content edge
• dimensions include content width and content-height
• content size properties (assuming that the box-sizing property remains default) include,

– width , min-width , max-width , height , min-height , max-height

Demo - CSS Box Model

• Demo - CSS Box Model

CSS Basics - box model - part 3

Padding

• box’s padding area includes the extent of the padding to the surrounding border
• background, colour etc properties for a content area extend into the padding

– we often consider the padding as extending the content
• padding itself is located in the box’s padding edge
• dimensions are the width and height of the padding-box.

25

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo2/

• control space between padding and content edge using the following properties,
– padding-top , padding-right , padding-bottom , padding-left
– padding (sizes calculated clock-wise)

Demo - CSS Box Model - Padding

• JSFiddle - CSS Box Model

CSS Basics - box model - part 4

Border

• border area extends padding area to area containing the borders
• it becomes the area inside the border edge
• define its dimensions as the width and height of the border-box
• calculated area depends upon the width of the border we set in the CSS
• set size of our border using the following properties in CSS,

– border-width
– border

Demo - CSS Box Model - Border

• JSFiddle - CSS Box Model

CSS Basics - box model - part 5

Margin

• margin area can extend this border area with an empty area
– useful to create a defined separation of one element from its neighbours

• dimensions of area defined as width and height of the margin-box
• control size of our margin area using the following properties,

– margin-top , margin-right , margin-bottom , margin-left
– margin (sizes calculated clock-wise)

Demo - CSS Box Model - Margin

• JSFiddle - CSS Box Model

Demo - CSS Box Model

• Demo - CSS Box Model

26

https://jsfiddle.net/62dax3zL/
https://jsfiddle.net/62dax3zL/
https://jsfiddle.net/62dax3zL/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo2/

Figure 9: CSS Box Model

27

Image - CSS Box Model

Source - MDN - CSS Box Model

Demo - CSS Box Model - Interactive

• interactive Box Model

Demos

CSS

• CSS - Complex Selectors Part 1
• CSS - Complex Selectors Part 2
• CSS - Complex Selectors Part 3

Travel Notes - series 1

• travel notes - demo 6
• travel notes - demo 7
• travel notes - demo 8

Travel notes app - series 2 - option 1

• travel notes - demo 1
• travel notes - demo 2
• travel notes - demo 3
• travel notes - demo 4
• travel notes - demo 5
• travel notes - demo 6

Travel notes app - series 2 - options 2 - plain JS

• travel notes - plain JS - demo 3
• travel notes - plain JS - demo 4
• travel notes - plain JS - demo 5

Resources

• CSS
– CSS Box Model
– MDN - CSS Box Model
– CSS Selectors

• JS
– MDN - JS
– JS Info - DOM Nodes

∗ MDN - JS Objects
∗ W3 Schools - JS

28

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/box-model/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo7/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo8/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo1
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo2
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo3
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo4
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo5
http://linode4.cs.luc.edu/teaching/cs/demos/424/week6/demo6
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/travel-notes/plainjs/plainjs-2-4/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://javascript.info/dom-nodes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
http://www.w3schools.com/js/default.asp

	JS Core - checking equality - part 1
	JS Core - checking equality - part 2
	JS Core - checking inequality - part 1
	JS Core - checking inequality - part 2
	HTML5, CSS, & JS - example - part 14
	HTML5, CSS, & JS - example - part 15
	HTML5, CSS, & JS - example - part 16
	CSS Basics - complex selector - part 1
	Demo - Complex Selectors - Part 1
	CSS Basics - complex selector - part 2
	Demo - Complex Selectors - Part 2
	CSS Basics - complex selector - part 3
	Demo - CSS Complex Selectors - Part 3
	HTML5, CSS, & JS - example - part 17
	HTML5, CSS, & JS - final thoughts
	Video - Scotoma - Da Vinci Code
	Image - HTML5, CSS, & JS - DOM recap
	Image - Travel Notes - Series 1 - recap
	HTML5, CSS, & JS - example - add-ons
	HTML5, CSS, & JS - Series 2 - part 1.2
	Video - HTML5, CSS, & JS
	HTML5, CSS, & JS - example - part 2.2
	HTML5, CSS, & JS - example - part 2.3
	JS Core - more conditionals - part 1
	JS Core - switch conditional - example
	JS Core - more conditionals - part 2
	HTML5, CSS, & JS - example - part 4.2
	Video - Fitts’ Law
	HTML5, CSS, & JS - example - part 5
	HTML5, CSS, & JS - example - part 6.2
	Image - Travel Notes - Series 2 - demo 2
	Video - HTML5, CSS, & JS
	HTML5, CSS, & JS - example - part 7
	HTML5, CSS, & JS - example - part 8.2
	HTML5, CSS, & JS - example - part 9.2
	Image - Travel Notes - Series 2 - demo 3
	HTML5, CSS, & JS - example - part 11
	JS Core - functions and values
	Image - HTML5, CSS, & JS - too many delete buttons
	HTML5, CSS, & JS - example - part 12.1
	HTML5, CSS, & JS - example - part 12.2
	HTML5, CSS, & JS - example - part 13.2
	HTML5, CSS, & JS - example - part 14
	HTML5, CSS, & JS - example - part 15
	HTML5, CSS, & JS - example - part 16
	HTML5, CSS, & JS - example - part 17
	HTML5, CSS, & JS - example - part 19
	Image - Square notes - a bit of fun
	Video - HTML5, CSS, & JS
	JS extras - best practices - part 1
	JS extras - best practices - part 2
	JS extras - performance - part 1
	JS extras - performance - part 2
	JS Core - objects - part 1
	JS Core - objects - example
	Image - JS Object
	ES6 - template literals
	JS Core - objects - part 2
	Image - JS Array
	JS Core - objects - Arrays
	CSS Basics - box model - part 1
	CSS Basics - box model - part 2
	Demo - CSS Box Model
	CSS Basics - box model - part 3
	Demo - CSS Box Model - Padding
	CSS Basics - box model - part 4
	Demo - CSS Box Model - Border
	CSS Basics - box model - part 5
	Demo - CSS Box Model - Margin
	Demo - CSS Box Model
	Image - CSS Box Model
	Demo - CSS Box Model - Interactive
	Demos
	Resources

