
Comp 324/424 - Client-side Web Design

Spring Semester 2024 Week 9

Dr Nick Hayward

Dev week demo & assessment

Course total = 25 credits

• continue development of a web application
– built from scratch
– HTML5, CSS, plain JavaScript…

• continue design and development of initial project outline and design
• working app (as close as possible…)

– NO content management systems (CMSs) such as Drupal, Joomla, WordPress…
– NO PHP, Python, Ruby, C# & .Net, Java, Go, XML…
– NO CSS frameworks, such as Bootstrap, Foundation, Materialize…
– NO CSS preprocessors such as Sass…
– NO template tools such as Handlebars.js &c.

• data may be implemented from either
– self hosted (MongoDB, Redis…)
– APIs
– cloud services (Firebase…)
– NO SQL…e.g. (you may NOT use MySQL, PostgreSQL &c.)

• outline research conducted
• describe data chosen for application
• show any prototypes, patterns, and designs

Dev week demo & assessment

DEV week assessment will include the following:

• brief presentation or demonstration of current project work
– ~ 10 minutes per group
– analysis of work conducted so far

∗ e.g. during semester & DEV week
– presentation and demonstration

∗ outline current state of web app
∗ explain what works & does not work
∗ show implemented designs since project outline & mockup
∗ show latest designs and updates

– due Monday 18th March 2024 @ 4.15pm

1

HTML5, CSS, & JS - example - part 1

add grid layout - option 1

• update the layout of our Travel Notes application to include a grid layout
• apply this grid layout to the overall application

– organisation and presentation of the notes
• remove the centred, fixed width for the body in our style.css stylesheet
• removes centre styling, results in content spanning full width of browser window
• add the grid layout to help us control this layout

<link rel="stylesheet" href="assets/styles/grid.css">

• then modify content categories, child elements to use new grid css
<!-- document header -->
<header>
<div class="row">
<div class="col-5">
<h3>travel notes</h3>
<h5>record notes from various places visited...</h5>

</div>
<div class="col-7"></div>

</div>
</header>

Image - HTML5, CSS, & JS - grid layout

Figure 1: Grid Layout - Updated Header - option 1

HTML5, CSS, & JS - example - part 1

add grid layout - option 2

• alternative layout option
<!-- grid banner -->
<div class="banner">

<!-- logo -->
<div class="logo">

</div>

2

<!-- document header -->
<header class="site-header">

<h3>travel notes</h3>
<!--<h5>record notes from various places visited...</h5>-->

</header>
<!-- banner extras -->
<div class="banner-extras">
</div>

</div> <!-- end of grid banner -->

• a few extra places added to layout
– logo, header, and banner extras

Image - HTML5, CSS, & JS - grid layout

Figure 2: Grid Layout - Updated Header - option 2

HTML5, CSS, & JS - example - part 2

add grid layout - option 1

• update our main content to position the note-input and note-controls
<!-- note input -->
<section class="note-input">
<div class="row">
<div class="col-12">
<h5>add note</h5>
<input><button>add</button>

</div>
<div>

</section>
<!-- note controls for delete... -->
<section class="note-controls">
<div class="row">
<div class="col-12">
<button id="notes-delete">Delete all</button>

</div>
</div>

</section>

• still need to amend style.css to remove additional fixed styling

Image - HTML5, CSS, & JS - grid layout 2

3

Figure 3: Grid Layout - mixed grid and fixed - option 1

HTML5, CSS, & JS - example - part 2

add grid layout - option 2

• modify main to include unique content
<!-- document main - unique to current page -->
<main class="site-content">

<div class="page-heading">
<!-- note input -->
<section class="note-input">

<h5>add note</h5>
<input type="text" id="input-note" />
<button id="add-note">add</button>
</section>
<!-- image search -->
<section class="image-search">

<h5>image search</h5>
<input type="text" id="input-image" />
<button id="search-images">search</button>
</section>
<!-- note controls for delete... -->
<section class="note-controls">

<h5>note controls</h5>
<button id="notes-delete" class="delete-all">Delete all</button>
</section>

</div><!-- end of page-heading -->
<!-- note output -->
<section class="note-output">
</section>

</main>

• add page-heading with sections
– note-input, image-search, note-controls

4

• add section for note-output
– update dynamically with notes

Image - HTML5, CSS, & JS - grid layout 2

Figure 4: Grid Layout - mixed grid and fixed - option 2

CSS Basics - cascading rules - part 1

• CSS, or cascading style sheets, employs a set of cascading rules
• rules applied by each browser as a ruleset conflict arises

– e.g. issue of specificity
p {
color: blue;
}

p.p1 {
color: red;
}

• the more specific rule, the class, will take precedence
• issue of possible duplication in rulesets

h3 {
color: black;

}

5

h3 {
color: blue;

}

• cascading rules state the later ruleset will be the one applied
– blue heading instead of black…

CSS Basics - cascading rules - part 2

• simple styling and rulesets can quickly become compounded and complicated
• different styles, in different places, can interact in complex ways
• a powerful feature of CSS

– can also create issues with logic, maintenance, and design
• three primary sources of style information that form this cascade

– 1. default styles applied by the browser for a given markup language
∗ e.g. colours for links, size of headings…

– 2. styles specific to the current user of the document
∗ often affected by browser settings, device, mode…

– 3. styles linked to the document by the designer
∗ external file, embedded, and as inline styles per element

CSS Basics - cascading rules - part 3

• basic cascading nature creates the following pattern
– browser’s style will be default
– user’s style will modify the browser’s default style
– styles of the document’s designer modify the styles further

CSS Basics - inheritance

• CSS includes inheritance for its styles
• descendants will inherit properties from their ancestors
• style an element

– descendants of that element within the DOM inherit that style
body {
background: blue;

}
p {
color: white;

}

• p is a descendant of body in the DOM
– inherits background colour of the body

• this characteristic of CSS is an important feature
– helps to reduce redundancy and repetition of styles

• useful to maintain outline of document’s DOM structure
• most styles follow this pattern but not all
• margin, padding, and border rules for block-level elements not inherited

CSS Basics - reset options

• to help us reduce browser defaults, we can use a CSS reset
• reset allows us to start from scratch

6

• customise aspects of the rendering of our HTML documents in browsers
• often considered a rather controversial option
• considered controversial for the following primary reasons

– accessibility
– performance
– redundancy

• use resets with care
• notable example of resets is Eric Meyer

– discussed reset option in May 2007 blog post
• resets often part of CSS frameworks…

Demo - CSS Reset - Before

Browser default styles are used for

• <h1> , <h3> , and <p>
• Demo - CSS Reset Before

Demo - CSS Reset - After

Browser resets are implemented using the Eric Meyer stylesheet.

• Demo - CSS Reset After

CSS - a return to inline styles

• inline styles are once more gaining in popularity
– helped by the rise of React &c.

• for certain web applications they are now an option
– allow us to dynamically maintain and update our styles

• their implementation is not the same as simply embedding styles in HTML
– dynamically generated
– can be removed and updated
– can form part of our maintenance of the underlying DOM

• inherent benefits include
– no cascade
– built using JavaScript
– styles are dynamic

CSS - against inline styles

• CSS is designed for styling
– this is the extreme end of the scale - in effect, styling is only done with CSS

• abstraction is a key part of CSS
– by separating out concerns, i.e. CSS for styling, our sites are easier to maintain

• inline styles are too specific
– again, abstraction is the key here

• some styling and states are easier to represent using CSS
– psuedoclasses etc, media queries…

• CSS can add, remove, modify classes

7

http://meyerweb.com/eric/tools/css/reset/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo8/
http://meyerweb.com/eric/tools/css/reset/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo9/
http://facebook.github.io/react/

– dynamically update selectors using classes

HTML5, CSS, & JS - example - part 3

add grid layout - option 1

• fix mixed rendering by removing width, margin, and padding for .note-controls
/* note controls */
.note-controls {
border-bottom: 1px solid #dedede;
display: none;

}

• continue to update Travel Notes app
– modify output for notes
– add further options for users

DEMO - Travel Notes - grid layout with media queries

CSS grid layout - part 1

intro

• grid designs for page layout, components…
– increasingly popular over the last few years
– useful for creating responsive designs

• quick and easy to layout a scaffolding framework for our structured content
• create boxes for our content

– then position them within our grid layout
• content can be stacked in a horizontal and vertical manner

– creating most efficient layout for needs of a given application
• another benefit of CSS grids is that they are framework and project agnostic

– thereby enabling easy transfer from one to another
• columns will increase and decrease relative to the size of the browser window
• also set break points in our styles

– helps to customise a layout relative to screen sizes, devices, aspect ratios…
– helps us differentiate between desktop and mobile viewers

HTML5, CSS, & JS - example - part 3

add grid layout - option 2

• use CSS3 grids to structure page
– add wrapper for grid in body

• content places for grid structure
– banner, site-content, site-footer
– e.g. banner for heading structure

Video - CSS grid

Layout considerations Layout and composition - up to 2:45

8

http://linode4.cs.luc.edu/teaching/cs/demos/424/week9/demo1/

Source - Layout and composition - YouTube

CSS3 Grid - intro

• gid layout with CSS is useful for structure and organisation
– applied to HTML page

• usage similar to table for structuring data
• in its basic form

– enables developers to add columns and rows to a page
• grid layout also permits more complex, interesting layout options

– e.g. overlap and layers…
• further information on MDN website,

– MDN - CSS Grid Layout

CSS3 Grid - general concepts & usage

• grid may be composed of rows and columns
– thereby forming an intersecting set of horizontal and vertical lines

• elements may be added to the grid with reference to this structured layout

Grid layout in CSS includes the following general features,

• additional tracks for content
– option to create more columns and rows as needed to fit dynamic content

• control of alignment
– align a grid area or overall grid

• control of overlapping content
– permit partial overlap of content
– an item may overlap a grid cell or area

• placement of items - explicit and implicit
– precise location of elements &c.
– use line numbers, names, grid areas &c.

• variable track sizes - fixed and flexible, e.g.
– specify pixel size for track sizes
– or use flexible sizes with percentages or new fr unit

CSS3 Grid - grid container

• define an element as a grid container using
– display: grid or display: inline-grid

• any children of this element become grid items
– e.g.

.wrapper {
display: grid;

}

• we may also define other, child nodes as a grid container
– any direct child nodes to a grid container are now defined as grid items

9

https://youtu.be/a5KYlHNKQB8
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

CSS3 Grid - what is a grid track?

• rows and columns defined with
– grid-template-rows and grid-template-columns properties

• in effect, these define grid tracks
• as MDN notes,

– “a grid track is the space between any two lines on the grid.””
– (https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout/Basic_Concepts_of_Grid_Layout)

• so, we may create both row and column tracks, e.g.
.wrapper {
display: grid;
grid-template-columns: 200px 200px 200px;

}

• wrapper class now includes three defined columns of width 200px
– thereby creating three tracks

• n.b. a track may be defined using any valid length unit, not just px …

HTML5, CSS, & JS - example - part 3

div.wrapper {
display: grid;
grid-gap: 0;
grid-template-rows: 80px auto 80px;
grid-template-areas:

"site-banner"
"site-content"
"footer";

margin: 20px 5% 0 5%;
padding: 0;
height: calc(99vh - 20px);

}

add grid layout - option 2 - wrapper

CSS3 Grid - fr unit for tracks - part 1

• CSS Grid now introduces an additional length unit for tracks, fr
• fr unit represents fractions of the space available in the current grid container

– e.g.
.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;

}

• we may also apportion various space to tracks, e.g.
.wrapper {
display: grid;
grid-template-columns: 2fr 1fr 1fr;

}

10

• creates three tracks in the grid
– but overall space effectively now occupies four parts
– two parts for 2fr , and one part each for remaining two 1fr

CSS3 Grid - fr unit for tracks - part 2

• we may also be specific in this sub-division of parts in tracks, e.g.
.wrapper {
display: grid;
grid-template-columns: 200px 1fr 1fr;

}

• first track will occupy a width of 200px
– remaining two tracks will each occupy 1 fraction unit

CSS3 Grid - repeat() notation for fr - part 1

• for larger, repetitive grids, easier to use repeat()
– helps define multiple instances of the same track
– e.g.

.wrapper {
display: grid;
grid-template-columns: repeat(4, 1fr);

}

• this creates four separate tracks - each defined as 1fr unit’s width

CSS3 Grid - repeat() notation for fr - part 2

• repeat() notation may also be used as part of the track definition
– e.g.

.wrapper {
display: grid;
grid-template-columns: 200px repeat(4, 1fr) 100px;

}

• this example will create
– one track of 200px width
– then four tracks of 1fr width
– and finally a single track of 100px width

• repeat() may also be used with multiple track definitions
– thereby repeating multiple times
– e.g.

.wrapper {
display: grid;
grid-template-columns: repeat(4, 1fr 2fr);

}

11

• this will now create eight tracks
– the first four of width 1fr
– and the remaining four of 2fr

CSS3 Grid - implicit and explicit grid creation

• in the above examples
– we simply define tracks for the columns
– and CSS grid will then apportion content to required rows

• we may also define an explicit grid of columns and rows
– e.g.

.wrapper {
display: grid;
grid-template-columns: repeat(2 1fr);
grid-auto-rows: 150px;

}

• this slightly modifies an implicit grid to ensure each row is 200px tall

CSS3 Grid - track sizing

• a grid may require tracks with a minimum size
– and the option to expand to fit dynamic content

• e.g. ensuring a track does not collapse below a certain height or width
– and that it has the option to expand as necessary for the content…

• CSS Grid provides a minmax() function, which we may use with rows
– e.g.

.wrapper {
display: grid;
grid-template-columns: repeat(2 1fr);
grid-auto-rows: minmax(150px, auto);

}

• ensures each row will occupy a minimum of 150px in height
– still able to stretch to contain the tallest content
– whole row will expand to meet the auto height requirements
– thereby affecting each track in the row

HTML5, CSS, & JS - example - part 3

div.banner {
grid-area: site-banner;
display: grid;
grid-template-columns: 90px 1fr auto;
grid-template-rows: 80px;
grid-template-areas:

"site-logo site-header banner-extras";
}

12

add grid layout - option 2 - banner

HTML5, CSS, & JS - example - part 3

add grid layout - option 2 - banner components

• various nested UI components
• banner

– logo, site-header, banner-extras
.logo {

grid-area: site-logo;
margin: 0;

}

.site-header {
grid-area: site-header;
margin: 0 5px 0 0;
border: 1px solid #ccc;
padding: 10px;

}

.banner-extras {
grid-area: banner-extras;
display: grid;
grid-template-columns: 150px 150px;
grid-template-areas:

"extra-left extra-right";
margin: 0 0 0 5px;
border: 1px solid #ccc;

}

CSS3 Grid - grid lines

• a grid is defined using tracks
– and not lines in the grid

• created grid also helps us with positioning by providing numbered lines
• e.g. in a three column, two row grid we have the following,

– four lines for the three vertical columns
– three lines for the two horizontal rows

• such lines start at the left for columns, and at the top for rows
• n.b. line numbers start relative to written script

– e.g left to right for western, right to left for arabic…

CSS3 Grid - positioning against lines

• when we place an item in a grid
– we use these lines for positioning, and not the tracks

• reflected in usage of
– grid-column-start , grid-column-end , grid-row-start , and grid-row-end proper-

ties.

13

• items in the grid may be positioned from one line to another
– e.g. column line 1 to column line 3

• n.b. default span for an item in a grid is one track,
– e.g. define column start and no end - default span will be one track…
– e.g.

.content1 {
grid-column-start: 1;
grid-column-end: 4;
grid-row-start: 1;
grid-row-end: 3;

}

CSS3 Grid - grid cell & grid area

grid cell

• a cell is the smallest unit on the defined grid layout
• it is conceptually the same as a cell in a standard table
• as content is added to the grid, it will be stored in one cell

grid area

• we may also store content in multiple cells
– thereby creating grid areas

• grid areas must be rectangular in shape
• e.g. a grid area may span multiple row and column tracks for required content

CSS3 Grid - add some gutters

• gutters may be created using the gap property
– available for either column or row
– column-gap and row-gap
– e.g.

.wrapper {
display: grid;
grid-template-columns: repeat(4, 1fr 2fr);
column-gap: 5px;
row-gap: 10px;

}

• n.b. any space used for gaps will be determined prior to assigned space for fr tracks

CSS3 Grid - working examples

• grid basic - page zones and groups
• grid basic - article style page
• grid layout - articles with scroll

14

http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/css-grid-layout/basic2/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2018/articles/basic3-progress/

HTML5, CSS, & JS - example - part 3

.site-content {
grid-area: site-content;
display: grid;
grid-template-areas:

"page-heading"
"content";

}

add grid layout - option 2 - site content

HTML5, CSS, & JS - example - part 3

add grid layout - option 2 - site content components

• main app structure and components
• page-heading grouping for grid structure

– note-input, image-search
– note-controls

.note-input {
grid-area: add-note;
margin: 10px 5px 0 0;
border: 1px solid #ccc;
padding: 0 20px 20px 20px;

}

.image-search {
grid-area: search-images;
margin: 10px 0 0 5px;
border: 1px solid #ccc;
padding: 0 20px 20px 20px;

}

.note-controls {
grid-area: note-controls;
margin: 10px 0 0 0;
border: 1px solid #ccc;
padding: 20px;

}

• note-input & image-search rendered as 50/50 split
• note-controls moved to separate row in page-heading

HTML5, CSS, & JS - example - part 3

.site-footer {
grid-area: footer;
margin: 0;
border-top: 1px solid #dddddd;

}

15

add grid layout - option 2 - site footer

• site banner and footer rendered equivalent to fixed
– main site content uses internal scroll for page

CSS3 Grid - sample layouts

intro

• grid layout enables more complex and interesting layout options
– overlap, layers…

• sample layouts using CSS grid structure
– common layout options and designs
– useful repetition of design
– modify base layouts for various site requirements

• sample layouts
– responsive layouts
– auto placement for dynamic content and media
– platform agnostic designs
– useful with SPA, SVG, async patterns &c.

HTML5, CSS, & JS - example - part 4

add flex to grid layout

• an additional option to consider - flex layouts
– aims to provide efficient way to align and proportion content

• known as Flexbox Layout
– idea is to apportion width and height for content
– proportions relative to container even when their size is unknown or dynamic

• flex layout could, in theory, replace a full grid layout
– considered more a complement to overall grid structure

• defined flex container expands items to fill the container’s available space
– can also shrink them to prevent any possible overflow

• think of a flex layout as supporting multiple directions
– direction agnostic

• many properties available for flex
– focus upon styling flex container and any flex items

CSS - Flexbox

intro

• helps solve many issues that have continued to plague layout and positioning
• used with HTML elements and components

– both client-side and cross-platform apps
• a few issues it tries to solve

– vertical and horizontal alignment
– defining a centred position for child elements relative to their parent
– equal spacing and proportions for child nodes regardless of available space
– equal heights and widths for varied content
– & lots more…

16

CSS - Flexbox

basic usage

• for any app layout, we need to define specific elements as flexible boxes
• i.e. those allowed to use flexbox in a given app

– e.g.
section {
display: flex;

}

• ruleset will define a section element as a parent flex container
– child elements may now accept flex declarations

• initial declaration, display: flex
– also includes default values for flexbox layout of child elements

• e.g. <div> elements in a section
– by default now arranged as equal sized columns with the same initial height

CSS - Flexbox

axes

• elements arranged using flexbox are laid out on two axes
• main axis

– axis running in the direction of the currently laid out flex items
– e.g. rows or columns
– start and end of axis = main start & main end

• cross axis
– axis running perpendicular to the current main axis
– start and end of axis = cross start & cross end

• each child element laid out inside flex container called a flex item

CSS - Flexbox

flex direction

• set a property for the flex direction
– defines direction of flex items relative to main axis
– i.e. layout direction for child elements

• default setting is row
– direction will be relative to current browser language setting
– e.g. for English language browsers = left to right

section {
flex-direction: column;

}

• override the default row setting
– arrange child items in a column

section {
display: flex;

17

flex-direction: column;
}

• ensures child flex items were 1aid out in a single column
• then override specific section elements

– allow child flex items in a row direction
#tabs {
flex-direction: row;

}

Image - CSS Flexbox

Figure 5: CSS Flexbox - flex direction

flex direction

CSS - Flexbox

flex item wrapping

• ensure child items do not overlap their parent flex container
– add a declaration for flex-wrap to a required ruleset
– e.g.

#tabs {
flex-direction: row;
flex-wrap: wrap;

}

Image - CSS Flexbox

without wrap

Image - CSS Flexbox

with wrap

18

Figure 6: CSS Flexbox - no flex wrap

Figure 7: CSS Flexbox - flex wrap

19

Video - Flexbox

flexible design Examples of Modular UI Design

Source - Modular UI Design - YouTube

HTML5, CSS, & JS - example - part 5

add flex to grid layout - option 1

• we might specify CSS properties for a flex container
.flex-container {

display: flex; /* defines container as flex */
flex-direction: row; /* defines positioning of items added to container */
flex-wrap: wrap; /* defines whether to wrap items to another line */
justify-content: flex-start; /* defines start point and distribution of items */

}

• allows us to position our container starting at the left
– items contained in a row
– contained items wrapping to additional lines if necessary

• many additional options available for each property
• also add rulesets for specific styling of items within a flex container
• we could add properties to a flex item such as

– specify the order of the flex items
– whether a particular item can grow or shrink relative to content
– default size of an item before any remaining space is distributed
– individual alignment for a given item…

CSS - Flexbox

flex direction reverse

• also set flex direction to reverse
– starts flex items from the right on an English language browser

#tabs {
flex-direction: row-reverse;
flex-wrap: wrap;

}

Image - CSS Flexbox

flex direction reverse

CSS - Flexbox

flex-flow shorthand

• also combine direction and wrap into a single declaration

20

https://www.youtube.com/watch?v=agPAklO7slY

Figure 8: CSS Flexbox - flex direction reverse

– flex-flow
– now contain values for both row and wrap
– e.g.

#tabs {
flex-flow: row wrap;

}

HTML5, CSS, & JS - example - part 6

add flex to grid layout - option 2

• flex container for option 2 design
/* note container - flex */
.note-output {

display: flex;
justify-content: space-between;
flex-wrap: wrap;
row-gap: 20px;/*applies to rows of items - not above first row... */
padding-top: 20px;

}

• output notes section
– organise single notes as flex items
– add gap between rows of flex items

• justify content in container
– notes start at left edge, end at right edge
– space between evenly apportioned per note

CSS - Flexbox

sizing of flex items

• for each flex item, we may need to specify apportioned space in the layout
– e.g. set space as an equal proportion for each flex item
– we may add the following to a child item ruleset

21

div.fTab {
flex: 1;

}

• defines each child flex item <div class="fTab">
– occupy an equal amount of space within the given row
– after considering margin and padding

• n.b. this value is proportional
– doesn’t matter if the value is 1 or 100 &c.

• define additional flex proportions for specific child items
– e.g.

div.fTab:nth-child(odd) {
flex: 2;

}

• each odd flex-item will now occupy twice available space
– space in the current direction

Image - CSS Flexbox

Figure 9: CSS Flexbox - flex item sizing

flex item sizing

CSS - Flexbox

minimum size

• then set a minimum size for a flex item
– e.g.

div.fTab {
flex: 1 100px;

}

• or a relative unit for the size
div.fTab {
flex: 1 20%;

}

• each flex item will initially be given a minimum

22

– e.g. 20% of the available space
– the remaining space will be defined relative to proportion units

Image - CSS Flexbox

Figure 10: CSS Flexbox - flex item sizing - minimum size

flex item sizing

HTML5, CSS, & JS - example - part 7

add flex to notes

• flex container and items useful for organising and positioning our notes
• due to uncertainty about content, size, and general note requirements

– flex positioning and styling removes the need for assumptions or fixed sizes
• we can start to modify the styling and rendering of our notes using flex

/* flex item */
.flex-item {
flex-basis: 300px; /* default size before extra */
flex-grow: 1; /* all items will be equal */

}

• gives us a default smallest size for each note
• then the ability for each note to grow to fill the row as required
• also work with responsive layouts

– due to the minimum size and the option to grow for each item
– and wrap flex items per flex container

• modify and update styles as we develop travel notes app

DEMO - Travel Notes - grid layout with flex notes

Image - HTML5, CSS, & JS - Flex Notes

23

http://linode4.cs.luc.edu/teaching/cs/demos/424/week9/demo2/

Figure 11: Grid Layout - flex notes

Image - HTML5, CSS, & JS - Flex Notes 2

Image - HTML5, CSS, & JS - Flex Notes 3

HTML5, CSS, & JS - example - part 8

add flex to notes

• Notes with Flex and Media Queries

HTML5, CSS, & JS - example - part 9

add flex to notes - option 2

• define styling for flex items in option 2 design
• note defined using card layout design

– card-view, card-content
/* note card - flex */
.card-view {
display: flex;
flex-direction: column;
flex: 0 0 250px;
border: 1px solid #CCCCCC;
padding: 20px;

}
.card-content {

24

http://linode4.cs.luc.edu/teaching/cs/demos/424/week9/demo2/

Figure 12: Grid Layout - flex notes - medium

25

Figure 13: Grid Layout - flex notes - small

26

flex: 1;
}

• card is flex container for child flex items
– e.g. note content, header, footer &c.

• flex defines shorthand property
– flex-grow, flex-shrink, flex-basis
– note set to initial length of 250px

CSS - Flexbox

flex item alignment

• Flexbox allows us to define alignment for flex items in each flex container
– relative to the main and cross axes

• e.g. we might want to specify a centred alignment for flex items
#tabs {
flex-direction: row;
flex-wrap: wrap;
align-items: center;

}

• align-items: center
– causes flex item in flex container to be centred along the cross axis
– however, they’ll still maintain their basic dimensions

• also modify value for align-items to either flex-start or flex-end
• such values will align flex items to either start or end of cross axis

CSS - Flexbox

override align per flex item

• as with flex
– also override alignment per flex item
– using align-self property add a value for positioning

• e.g. a sample declaration might be as follows
div.fTab:nth-child(even) {
flex: 2;
align-self: flex-end;

}

CSS - Flexbox

justify content for flex item

• also specify justify-content for flex items in a flex container
– property allows us to define position of a flex item relative to main axis

• default value is flex-start
• then modify it relative to one of the following

– flex-end

27

– center
– space-around

∗ distributes each flex item evenly along main axis with space at either end
– space-between

∗ same as space-around without space at either end…

CSS - Flexbox

alignment and order - part 1

• define alignment relative to each axis using a specific declaration
– e.g. for the main we may use justify-content
– for the cross axis we use align-items

• also modify layout order of flex items
– without directly changing underlying source order

• use the following pattern to specify order
div.fTab:first-child {
order: 1;

}

• first flex item will now move to the end of the tab list

Image - CSS Flexbox

Figure 14: CSS Flexbox - flex item order 1

flex item order

CSS - Flexbox

alignment and order - part 2

• due to default order for flex items
– by default, all flex items have an order value set to 0

• higher the order value, later the item will appear in the list &c.
• items with the same order will revert to the order in the source code
• also possible to ensure certain items will always appear first

– or at least before default order values

28

– by using a negative value for the order declaration
– e.g.

div.fTab:last-child {
order: -1;

}

CSS - Flexbox

nesting flex containers and items - part 1

• Flexbox can also be used to create nested patterns and structures
– e.g. we may set a flex item as a flex container for its child nodes

• we might add a banner to the top of a page
<section id="banner">
<header id="page-header">
<h3>spire and the signpost</h3>
<h5>point to the stars...</h5>

</header>
<section id="search">
<input type="text" id="searchBox"/>
<button id="searchBtn">Search</button>

</section>
</section>

CSS - Flexbox

nesting flex containers and items - part 2

• set #banner , #page-header , and #search as flex containers
– e.g.

#search {
display: flex;

}

• then specify various declarations for #search
– e.g.

#search {
display: flex;
flex-direction: row;
flex: 2;
align-self: flex-start;

}

• includes values for itself and any child elements
– if we then add some rulesets for the nested flex items
– e.g.

#searchBox {
flex: 4;

}

29

#searchBtn {
flex: 1;

}

• we get a simple proportional split of 4:1 for the input field to the button

Image - CSS Flexbox

Figure 15: CSS Flexbox - nested flex containers

nested flex containers

HTML5, CSS, & JS - example - part 10

add flex to notes - option 2

• define rulesets for child items
– card-view header
– card-view footer

.card-view header {
padding: 10px;
background-color: #666666;
color: #EEEEEE;
font-size: 17px;

}
.card-view footer {

border-top: 1px solid #666666;
padding: 10px 0;

}

• DEMO - Travel Notes - Version 3 - Grid

Image - HTML5, CSS, & JS - Flex Notes

Image - HTML5, CSS, & JS - Flex Notes

30

http://linode4.cs.luc.edu/teaching/cs/travelnotes/v3-1-grid/

Figure 16: Grid Layout - flex notes - card design

Figure 17: Grid Layout - flex notes - card view with space between

31

CSS grid layout - part 8

media queries

• often need to consider a mobile-first approach
• introduction of CSS3, we can now add media queries
• modify specified rulesets relative to a given condition

– eg: screen size for a desktop, tablet, and phone device
• media queries allow us to specify a breakpoint in the width of the viewport

– will then trigger a different style for our application
• could be a simple change in styles

– such as colour, font etc
• could be a modification in the grid layout

– effective widths for our columns per screen size etc…

Image - Grid Layout 4

Figure 18: Grid Layout - Media Queries

32

CSS3 Grid - responsive layout

intro

• display a layout with a variety of patterns and structures, e.g.
– single column for a phone
– add a sidebar for a tablet of lower window resolution
– full width view with dual sidebars &c.

• use responsive designs and structures for various games, media playback…
• responsive works with variety of markup

– e.g. transform SVG designs

CSS3 Grid - responsive layout

page structure

• start with a sample page structure for a HTML page
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CSS Grid - Responsive Layout</title>
<link rel="stylesheet" type="text/css" href="./assets/style.css">

</head>
<body>
<div class="wrapper">

...
</div>

</body>
</html>

CSS3 Grid - responsive layout

page structure - HTML5

• add some HTML5 markup for a header , navigation , footer , and some main content
<div class="wrapper">

<header class="site-header">
<h3>Spire & the Signpost</h3>
<h5>Shine through the gloom, and point to the stars...</h5>

</header>
<nav class="site-nav">

Home
Charts
Data
Views

</nav>
<!-- use aside for tangentially related content for parent section... -->

33

<aside class="content-side">
<header>

<h5>sidebar...</h5>
</header>

</aside>
<main class="content">

<article class="content-article">
<header class="article-header">

<h5>Welcome</h5>
</header>
<p>...</p>

</article>
</main>
<section class="site-links">

<h6>social links...</h6>
</section>
<footer class="site-footer">

<h6>footer...</h6>
</footer>

</div>

• demo - basic responsive

CSS3 Grid - responsive layout

CSS and structure - part 1

• for the page structure
– need to define some template areas for our grid in the CSS
– e.g.

/* CONTENT */
.content {

grid-area: content;
}

• use such template area names
– defined with the grid-area property
– define a layout for the overall page or part of a page

CSS3 Grid - responsive layout

CSS and structure - part 2

• template areas may then be used with the parent for the grid structure
– e.g. wrapper for the overall page

.wrapper {
display: grid;
grid-gap: 10px;
grid-template-areas:

"site-header"
"site-nav"
"content-side"

34

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v1/

"content"
"site-links"
"site-footer"

}

• wrapper class will display as a grid
– with a gap between each area of the grid
– has a single column in this example
– includes the required order for the grid areas

CSS3 Grid - responsive layout

define media query

• current example would be suitable for a collapsed phone view
– single column view
– will also render for other resolutions and devices

• then add a media query for alternative layouts and displays
– may be triggered using a check of current width for screen
– check width of window…

/* min 700 */
@media (min-width: 700px) {

.wrapper {
grid-template-columns: 1fr 3fr;
grid-template-areas:
"site-header site-header"
"site-nav site-nav"
"content-side content"
"site-links site-footer"

}
}

CSS3 Grid - responsive layout

specific media query

• add further media queries to handle various rendering requirements
– e.g. add height property to fix footer at bottom of page

@media (min-width: 700px) {
.wrapper {

grid-template-columns: 1fr 3fr;
grid-template-rows: 120px 60px calc(98vh - 240) 60px;
grid-template-areas:
"site-header site-header"
"site-nav site-nav"
"content-side content"
"site-links site-footer";
height: 98vh;

}
}

• specify height of current viewport using a relative unit, vh

35

• add grid-template-rows to define known heights for three of the four rows
• add a variant height for the main content

– main content is only given a height corresponding to available space in viewer window
– height achieved using the calc() function

• demo - responsive with specific media query

Resources

• MDN - CSS3 Grid
• W3 Schools - CSS Grid View
• Example Responsive UI Designs - YouTube
• MDN - CSS3 Grid
• Modular UI Design - YouTube
• W3 Schools - CSS Grid View
• MDN - CSS Flexbox
• W3 Schools - CSS Flexbox
• Various

– Example Responsive UI Designs - YouTube
– MDN - CSS3 Grid
– Modular UI Design - YouTube

36

http://linode4.cs.luc.edu/teaching/cs/demos/424/grids/responsive/v2/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://www.w3schools.com/css/css_rwd_grid.asp
https://www.youtube.com/watch?v=2mKvjEdvtNE
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://www.youtube.com/watch?v=agPAklO7slY
https://www.w3schools.com/css/css_rwd_grid.asp
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Flexbox
https://www.w3schools.com/css/css3_flexbox.asp
https://www.youtube.com/watch?v=2mKvjEdvtNE
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://www.youtube.com/watch?v=agPAklO7slY

	Dev week demo & assessment
	Dev week demo & assessment
	HTML5, CSS, & JS - example - part 1
	Image - HTML5, CSS, & JS - grid layout
	HTML5, CSS, & JS - example - part 1
	Image - HTML5, CSS, & JS - grid layout
	HTML5, CSS, & JS - example - part 2
	Image - HTML5, CSS, & JS - grid layout 2
	HTML5, CSS, & JS - example - part 2
	Image - HTML5, CSS, & JS - grid layout 2
	CSS Basics - cascading rules - part 1
	CSS Basics - cascading rules - part 2
	CSS Basics - cascading rules - part 3
	CSS Basics - inheritance
	CSS Basics - reset options
	Demo - CSS Reset - Before
	Demo - CSS Reset - After
	CSS - a return to inline styles
	CSS - against inline styles
	HTML5, CSS, & JS - example - part 3
	CSS grid layout - part 1
	HTML5, CSS, & JS - example - part 3
	Video - CSS grid
	CSS3 Grid - intro
	CSS3 Grid - general concepts & usage
	CSS3 Grid - grid container
	CSS3 Grid - what is a grid track?
	HTML5, CSS, & JS - example - part 3
	CSS3 Grid - fr unit for tracks - part 1
	CSS3 Grid - fr unit for tracks - part 2
	CSS3 Grid - repeat() notation for fr - part 1
	CSS3 Grid - repeat() notation for fr - part 2
	CSS3 Grid - implicit and explicit grid creation
	CSS3 Grid - track sizing
	HTML5, CSS, & JS - example - part 3
	HTML5, CSS, & JS - example - part 3
	CSS3 Grid - grid lines
	CSS3 Grid - positioning against lines
	CSS3 Grid - grid cell & grid area
	CSS3 Grid - add some gutters
	CSS3 Grid - working examples
	HTML5, CSS, & JS - example - part 3
	HTML5, CSS, & JS - example - part 3
	HTML5, CSS, & JS - example - part 3
	CSS3 Grid - sample layouts
	HTML5, CSS, & JS - example - part 4
	CSS - Flexbox
	CSS - Flexbox
	CSS - Flexbox
	CSS - Flexbox
	Image - CSS Flexbox
	CSS - Flexbox
	Image - CSS Flexbox
	Image - CSS Flexbox
	Video - Flexbox
	HTML5, CSS, & JS - example - part 5
	CSS - Flexbox
	Image - CSS Flexbox
	CSS - Flexbox
	HTML5, CSS, & JS - example - part 6
	CSS - Flexbox
	Image - CSS Flexbox
	CSS - Flexbox
	Image - CSS Flexbox
	HTML5, CSS, & JS - example - part 7
	Image - HTML5, CSS, & JS - Flex Notes
	Image - HTML5, CSS, & JS - Flex Notes 2
	Image - HTML5, CSS, & JS - Flex Notes 3
	HTML5, CSS, & JS - example - part 8
	HTML5, CSS, & JS - example - part 9
	CSS - Flexbox
	CSS - Flexbox
	CSS - Flexbox
	CSS - Flexbox
	Image - CSS Flexbox
	CSS - Flexbox
	CSS - Flexbox
	CSS - Flexbox
	Image - CSS Flexbox
	HTML5, CSS, & JS - example - part 10
	Image - HTML5, CSS, & JS - Flex Notes
	Image - HTML5, CSS, & JS - Flex Notes
	CSS grid layout - part 8
	Image - Grid Layout 4
	CSS3 Grid - responsive layout
	CSS3 Grid - responsive layout
	CSS3 Grid - responsive layout
	CSS3 Grid - responsive layout
	CSS3 Grid - responsive layout
	CSS3 Grid - responsive layout
	CSS3 Grid - responsive layout
	Resources

