
Notes - Design - Users and Mental Models

• Dr Nick Hayward

A brief intro to users and mental models relative to application and interface design.

Contents

• Intro
• Mental model
• Use with apps and UI

– interface appearance
– interface concepts, syntax, general rules…
– navigation map
– plans and strategies for accomplishing tasks and reacting to problems &c.
– heuristics, conventions…
– perception of application’s implementation model

• Communicating a mental model
• Resources

Intro Mental models are formed as a user learns how to perform given tasks within an application. They
are effectively creating a mental model of how your application works and what they need to do to operate
it successfully.

Mental model A mental model is a conceptual representation in our user’s mind of how a system works,
and therefore how to operate the interface for this system. A user’s mental model will naturally reflect
their current understanding, and therefore this understanding is subject to change as they learn and gain
experience using the application. It may also diminish or disappear as a user forgets details over time.

It is this mental model that a user will rely upon to reason appropriately for the given application and scenario.
Users will also develop expectations of the application’s behaviour based upon such mental models.

If we consider user’s mental models, and then compare them to actual correct system behaviour, the system’s
implementation model, it can begin to explain many usability issues and problems. Our designs should aid
a user to develop a correct mental model and accompanying habits.

Use with apps and UI How may we consider a mental model relative to our applications and user
interfaces.

Well, such mental models will often consist of the following elements:

• interface appearance
• interface concepts, syntax, general rules…
• navigation map
• plans and strategies for accomplishing tasks and reacting to problems &c.
• heuristics, conventions…
• perception of application’s implementation model

interface appearance As a user works their way through an application and its interface, they will form
visual images of the places they have encountered and those that subsequently become familiar.

For example, various pages, screens, tabs, windows &c. within the application’s interface. However, for most
users these mental images will be vague and inherently imperfect unless, of course, the user has an eidetic
memory.

Therefore, as a user becomes more familiar with an application’s user interface, they become familiar with
the general layout of the places they encounter frequently. The quality of these mental images will necessarily
be affected by frequency of use.

1



For example, a general user will build up a mental image of an application, but this will often not include
specifics such as menu layouts, the exact sequence of icons in a toolbar, or options within control panels, and
so on. A user is unlikely to be able to sketch out in detail an application’s interface from a mental model.

interface concepts, syntax, general rules… An application is designed to solve a problem or meet
a specific requirement. Therefore, the syntax and rules used to solve such a problem are known as the
application domain, the business domain, or the problem domain.

Dependent upon your system, the problem domain might actually be pretty small. The user of this application
would, therefore, only need to understand a handful of concepts. More complicated or involved systems
naturally demand greater, and more in-depth, knowledge and understanding of a domain.

Some applications, in particular the more complex and involved, will, therefore, have to be designed with the
inherent assumption of experience and prior-knowledge. Effectively, a thorough understanding and awareness
of the required domain gained via education, training, or experience. Hopefully, a combination of each of
these options.

Other applications have to accept the responsibility of communicating and highlighting their domain’s con-
cepts to the user. Games, in particular role-playing or fantasy, are often seen as an extreme example of
this concept. Their use of imaginary worlds, tools, and actions provide an extra layer to their given domain.
Even more cursory, simpler games require the user to quickly learn their objects and goals, and therefore
how they need to interact within the game’s domain.

However, in many scenarios, users will often only require a cursory understanding of an application to begin
usage. For example, users do not need to understand the inherent concept of URLs to be able to enter a
website address in a web browser’s address bar.

This is also true if the application is partly automated or simply follows a pre-defined path. Buying concert
tickets online or ordering a package delivery are both examples of interfaces for applications where some
degree of guidance, or hand-holding, occurs for the user.

Many complex applications, including common office suite software, still allow a user to get started quickly,
for example with a simple text document. Many users will simply be unaware, or may not even care, about
the myriad options available within such an application. This allows us to develop application learning based
upon a user’s initial, cursory understanding and usage of the given application.

navigation map As we consider our applications, we can see that many examples include the notion of
places.

For example, places may include pages, screens, tabs, windows, and so on, which allow a user to visit given
content and data.

As a user begins to differentiate between these places, and navigate to them repeatedly, they gradually form
a mental navigation map. This navigation map effectively directs them back to different locations within our
application.

Navigation will become a regular action required by users to complete a task within our applications. Re-
peatedly buy goods at an online e-commerce site, and you will build up a complementary navigation map for
such sites. The interesting thing with this type of map is that users will often simply expect similar patterns
at other e-commerce sites as well. Consider the number of such sites that follow the same basic pattern, and
how many open source e-commerce tools and content management systems that also support similar design
patterns.

The other interesting aspect of navigation maps is that there may be multiple ways to get to the same
location within our application. Users may often not be aware of such multiple options, and those that
are will often simply adhere to a preferred method and route. Consider the many options available within
applications for printing.

2



A simple example of a website flowchart is as follows,

Figure 1: Simple example of website flowchart

3



We may then compare this example with a more detailed website,

Figure 2: Detailed example of website flowchart

4



plans & strategies for accomplishing tasks & reacting to problems… Users will often memorise
plans of actions required to achieve certain given tasks. An action plan might reflect a simple sequence of
steps a user needs to follow. As a user becomes more experienced and comfortable with the application,
they may internalise a required conceptual structure. This is often similar to a flowchart diagram which
has various decision points and branches with steps the user may follow under different circumstances. It’s
worth noting that this mental depiction may not be complete, and may not always be correct. The mind
has a habit of playing tricks on us.

A user may also not be explicitly aware of why a defined sequence of actions performs a given task, but they
have memorised the sequence and are able to reproduce it as necessary.

A user taught by rote in a class or lesson may often fall in to this category. It will also often be the case if
the user has stumbled upon a successful sequence by trial and error.

heuristics, conventions… The mental model developed and deployed by our user may also include general
heuristics, or rule of thumb type guidelines, and other conventions picked up from a broader context. These
may have been learned and added from experience, and subsequently applied to our system.

As an example, common UI elements may exist between disparate applications, or the application and
operating system, thereby allowing a user to infer interaction patterns for an application.

perception of application’s implementation model As a user becomes more familiar with an ap-
plication, they often start to infer patterns for behaviour within the application. Whilst the code and
implementation for an application should, more often than not, remain opaque to an end-user, this does not
prevent a user from recognising such patterns from repeated general usage.

This is not actually a bad thing for most applications, as repeated patterns and manners can be used to our
advantage as designers.

For example, a user may be able to create a new post within our application by selecting the button Add
post, and then adding their content &c.. After saving their post, they notice that this new post appears at
the top of the list with an associated link in the application’s index. As they view other lists and indices,
they should be able to infer that the most recent item or entry is at the top, and the first at the bottom.
Bad design would arbitrarily change this pattern, and confuse the user of the application.

Communicating a mental model Mental models are not only useful for users but they are also part
of the initial design process and thinking for us as interface designers. We will, naturally, have formed a
conceptual mental model of our own for how the application should work.

The goal for us is to try to ensure that users develop a mental model that matches our designer’s mental
model.

One obvious way to achieve this goal is to provide a structured learning and educational infrastructure that
clearly explains the product’s concepts and operation. This may be output as documentation, training,
demos, and so on. However, we also need to face the simple reality that many users will often not read the
documentation or follow the tutorials.

Therefore, many users will still rely upon trial and error, simply starting to use an application and learning
bits and pieces as they go along.

The visual presentation of an application’s user interface provides cues and guidance to users on how to
complete actions and tasks. The behaviour of the application provides feedback to the user as to whether
those actions and tasks have been successful or not. Therefore, it is hoped that as a user develops familiarity
with an application’s user interface, their mental model will more closely approximate the designers.

Don Norman refers to these conceptual models as the design model and the user’s model. The visual
presentation and behaviour exhibited by the product’s user interface is called the system image.

5



Therefore, to design a usable and approachable, in effect learnable, product, as designers one of our primary
challenges is ensuring that the design model and system image are aligned so that the system image accu-
rately portrays the design model. This should then enable our users to develop their user model as a close
approximation of the design model.

Resources

• Card, S.K., Moran, T.P. and Newell, A. The psychology of human-computer interaction. Lawrence
Erlbaum Associates. 1983.

• Krug, S. Don’t make me think, revisited: A common sense approach to web usability. 3rd Edition. New
Riders. 2014.

• Norman, D. The Design of Everyday Things. Basic Books. 2013.

6


	Notes - Design - Users and Mental Models

