
Notes - JavaScript - ES Modules - Usage

• Dr Nick Hayward

A collection of notes &c. on plain JavaScript modules, in particular usage of ES modules introduced with ES2015.

Contents

• Intro
• Export - export statements
• Export - export default
• Module bindings
• Export - named export
• Export - lists
• Export - export from ...
• Import - import statements
• Import - import named exports
• Import - import with wildcard
• Benefits & practical usage

Intro

• simpler and easier to work with than CommonJS
– in most examples…

• JavaScript strict mode is enabled by default
• strict mode helps with language usage - check for poor usage

– stops hoisting of variables
– variables must be declared
– function parameters must have unique name
– assignment to read-only properties throws errors
– …

• modules are exported with export statements
• modules are imported with import statements

Export - export statements

• ES6 modules are individual files
– expose an API using export statements

• declarations are scoped to the local module
• e.g. variables declared inside a module

– not available to other modules
– need to be explicitly exported in module API
– need to be imported for usage in another module

• export statements may only be added to top-level of a module
– e.g. not in function expression *&c.

• cannot dynamically define and expose API using methods
– unlike CommonJS module system - Node.js &c.

1



Export - export default

• common option is to export a default binding, e.g.
export default `hello world`

export default {
name: 'Alice',
place: 'Wonderland'

}

export default [
'Alice', 'Wonderland'

]

export default function name() {
...

}

Module bindings

• ES modules export bindings
– not values or references

• e.g. an export of count variable from a module
– count is exported as a binding
– export is bound to count variable in the module
– value is subject to changes of count in module

• offers flexibility to exported API
– e.g. count might originally be bound to an object
– then changed to an array…

• other modules consuming this export
– they would see change as count is modified
– modified in module and exported…

• n.b. take care with this usage pattern
– useful for counters, logs &c.
– can cause issues with API usage for a module

Export - named export

• we may define bindings for export
• explicit instead of assigning properties to implicit export object

– e.g.
export let counter = 0
export const count = () => counter++

• cannot refactor this example for named export
– syntax error will be thrown
– e.g.

let counter = 0
const count = () => counter++
export counter // this will return syntax error
export count

• rigid syntax helps with analysis, parsing
– static analysis for ES modules

2



Export - lists

• lists provide a useful solution to previous refactor issue
• syntax for list export easy to parse
• export lists of named top-level declarations

– variables &c.
• e.g.

let counter = 0
const count = () => counter++
export { counter, count }

• also rename binding for export, e.g.
let counter = 0
const count = () => counter++
export { counter, count as increment }

• define default with export list, e.g.
let counter = 0
const count = () => counter++
export { counter as default, count as increment }

Export - export from ...

• expose another module’s API using export from...
– i.e. a kind of pass through…

• e.g.
export { increment } from './myCounter.js'

• bindings are not imported into module’s local scope
• current module acts as conduit, passing bindings along export/import chain…
• module does not gain direct access to export from ... bindings

– e.g. if we call increment it will throw a ReferenceError
• aliases are also possible for bindings with export from...

– e.g.
export { increment as addition } from './myCounter.js'

Import - import statements

• use import to load another module
• import statement are only allowed in top level of module definition

– same as export statements
– helps compilers simplify module loading &c.

• import default exports
– give default export a name as it is imported
– e.g.

import counter from './myCounter.js'

• importing binding to counter
• syntax different from declaring a JS variable

3



Import - import named exports

• also imported any named exports
– import more than just default exports

• named import is wrapped in braces
– e.g.

import { increment } from './myCounter.js'

• also import multiple named exports
– e.g.

import { increment, decrement } from './myCounter.js'

• import aliases are also supported
– e.g.

import { increment as addition } from './myCounter.js'

• combine default with named
– e.g.

import counter, { increment } from './myCounter.js'

Import - import with wildcard

• we may also import using the wildcard operator
– e.g.

import * as counter from './myCounter.js'
counter.increment()

• name for wildcard import acts like object for module
• call module exports on wildcard

import * as counter from './myCounter.js'
counter.increment()

• common pattern for working with libraries &c.

Benefits & practical usage

• offers ability to explicitly publish an API
– keeps module content local unless explicitly exported

• similar function to getters and setters
– explicit way in and out of modules
– explicit options for reading and updating values…

• code becomes simpler to write and manage
– module offers encapsulation of code

• import binding to variable, function &c.
– then use it as normal…

• removes need for encapsulation in main JS code
– e.g. with patterns such as IIFE…

• n.b. need to be careful how we use modules
– e.g. priority for access, security, testing &c.
– all now moved to individual modules…

4


	Notes - JavaScript - ES Modules - Usage

