
Extra notes - JavaScript - Logic - Part 1

• Dr Nick Hayward

A brief introduction to logic in JavaScript.

Contents

• Intro
• Logic

– blocks
– conditionals
– loops

• References

Intro JavaScript is now a core, invaluable technology for client-side design and development. From plain
JavaScript to the latest library, its growth as a development environment has exploded over the last few
years. It is now being used as a powerful technology to help us rapidly prototype and develop web, mobile,
and desktop applications. We can also use it with embedded systems.

Logic A few underlying concepts for working with logic in JavaScript.

blocks A natural coding style, for JS and other languages, is the simple act of grouping contiguous and
related code statements together. Often known as blocks, in JS a block is defined by wrapping one or more
statements together within a pair of curly braces, {} .

Such blocks are commonly attached to other forms of control statement, including conditional statements,
if (a > b) {
...do something useful...
}

conditionals Conditionals, and by association conditional statements, inherently require a decision to be
made. A code statement, and application, will often need to consult state and the answer will predominantly
be a simple yes or no.

Within our JS applications, there are many different ways we can express conditionals. The most common
example is the if statement. In essence, we use this statement to check, if this given condition is true,
do the following…
if (a > b) {
console.log("a is greater than b...");
}

The if statement requires an expression between the parentheses that can be treated as either true or
false.

We can add an additional option if this expression returns false, using a common else clause
if (a > b) {
console.log("a is greater than b...");
} else {
console.log("no, b is greater...");
}

As mentioned above, types that are not matching, in effect the expected type for the comparison, will be
coerced by JS to the expected type. For an if statement, JS expects a boolean .

1

With this in mind, JS defines a list of values that it considers false. These values will become false when
coerced to a boolean . For example, such values include 0 (and ""). This means that any value not
on this list of false values will be considered true, and therefore coerced to true when defined as a boolean
.

Conditionals in JS also exist in another form, which includes the switch statement. Further details on
conditionals later on.

loops Programming in general, and JS in this instance, uses loops to allow repeating sets of actions until
a given condition fails. In effect, this repetition continues whilst the requested condition holds.

Loops can take many different forms, but in essence they follow this basic behaviour.

A loop includes the test condition as well as a block, normally within curly braces. Each time this block
executes, an iteration of the loop has occurred.

Good examples of this behaviour include the while and do...while loops. Each repeat a block of
statements until a condition ceases to evaluate as true .

The basic difference between these loops, while and do...while , is whether the conditional tested is
before the first iteration (while loop), or after the first iteration (do...while) loop.

If the conditional test returns as false , the next iteration of both of these loops will fail to execute. The
loop stops.

So, if the condition is initially false, a while loop will never run, but a do...while will run through
for the first time.

We can also stop a JS loop using the common break statement.

Another useful form of loop is known as the for loop. This loop has three clauses, including

• initialisation clause
• conditional test clause
• update clause

If the goal of the loop is counting, or iterating over a large list or array, it is often more efficient to use a
for loop. It will often also be the easier option.

There are other specialised forms of loop that will be covered later on.

n.b. don’t forget, programming languages, and Computer Science in general, start counting at 0 .

References

• MDN
– MDN - JS
– MDN - JS Const
– MDN - JS Data Types and Data Structures
– MDN - JS Grammar and Types

• W3 - JS Performance

2

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types
http://www.w3schools.com/js/js_performance.asp

	Extra notes - JavaScript - Logic - Part 1

