
Extra Notes - Patterns - PubSub

• Dr Nick Hayward

A brief overview of implementing the Publication and Subscription, PubSub, pattern using plain JavaScript.

Contents

• Intro
• Benefits of observer & PubSub patterns
• Example

– event system
– usage

Intro A variation of the standard observer pattern is the publication and subscription, or PubSub, pattern.

Commonly used in JavaScript development, the PubSub pattern publishes a topic or event channel. This
publication acts as a mediator between subscriber objects wishing to receive notifications, and the publisher
object announcing an event.

This mediator, or event system, allows us as developers to easily define specific events, which may then pass
custom arguments to a subscriber.

In effect, we’re trying to avoid potential dependencies between subscriber objects and the publisher object.

Inherent to this pattern is the simple abstraction of responsibility. Publishers are unaware of the nature or
type of subscribers for their messages. Likewise, subscribers are unaware of the specifics for a given publisher.
Subscribers simply identify their interest in a given topic or event, and then receive notifications of updates
for a given subscribed channel.

A primary difference with the observer pattern is the abstraction of the subscriber. As long as a subscriber
is able to handle and receive the notifications, they can use the broadcasts by the publisher.

So, we’re creating an event system that sits between the publisher and the subscriber.

For example,

publisher

| publish topic/event
v

| topic/event |
channel

^
| subscribe

subscriber

In effect, the subscriber is now registered to listen for certain topic or event announcements. The handler
for a given subscriber may then decide to output the return from the publisher, or perhaps simply log the
update, and so on.

1

Benefits of observer & pub-sub patterns Observer and PubSub patterns help us, as developers,
consider more carefully the inherent relationships that exist within our app’s logic and structure.

We should be able to identify certain aspects of our application, which contain direct relationships. Many
of these dependencies may be replaced with subjects and observers.

A change to tightly coupled code may initially seem straightforward, but in a large application this can
quickly become bad practice. A seemingly minor change to a tightly coupled application will often create a
cascade or waterfall effect for subsequent required changes and updates.

A known side-effect of such tightly-coupled code is the frequent need to mock usage &c. in tests. Again, as the
app scales this will be increasingly fraught with issues, including testing complexity and time requirements.

With the PubSub pattern, an inherent benefit for our code is the creation of smaller, loosely coupled blocks,
which may then help improve management and reuse.

Example An initial example of the PubSub pattern implemented with JavaScript.

Part 1 - the event system
// constructor for pubsub object
function PubSub () {
this.pubsub = {};
}

// publish - expects topic/event & data to send
PubSub.prototype.publish = function (topic, data) {

// check topic exists
if (!this.pubsub[topic]){

console.log(`publish - no topic...`);
return false;

}
// loop through pubsub for specified topic - call subscriber functions...
this.pubsub[topic].forEach(function(subscriber) {

subscriber(data || {});
});

};

// subscribe - expects topic/event & function to call for publish notification
PubSub.prototype.subscribe = function (topic, fn) {

// check topic exists
if (!this.pubsub[topic]) {

// create topic
this.pubsub[topic] = [];
console.log(`pubsub topic initialised...`);

}
else {

// log output for existing topic match
console.log(`topic already initialised...`);

}
// push subscriber function to specified topic
this.pubsub[topic].push(fn);

};

2

Part 2 - example usage
// basic log output
var logger = data => { console.log(`logged: ${data}`); };

// test function for subscriber
var domUpdater = function (data) {

document.getElementById('output').innerHTML = data;
}

// instantiate object for PubSub
const pubSub = new PubSub();

// subscriber tests
pubSub.subscribe('test_topic', logger);
pubSub.subscribe('test_topic2', domUpdater);
pubSub.subscribe('test_topic', logger);

// publisher tests
pubSub.publish('test_topic', 'hello subscribers of test topic...');
pubSub.publish('test_topic2', 'update notification for test topic2...');

• Demo - Pub/Sub

3

http://linode4.cs.luc.edu/teaching/cs/demos/422/pubsub/basic/

	Extra Notes - Patterns - PubSub

