Notes - JavaScript - Gang of Four - Behavioral - Command
Dr Nick Hayward

A brief introduction to the Command pattern in JavaScript/TypeScript.

What is the Command pattern?

Command encapsulates a request as an object. You package up the action (and its parameters) so that it
can be queued, logged, undone/redone, or bound to UI controls without the invoker knowing the details of
how it’s done.

Benefits:

o decoupling: invoker (button/menu/queue) is separated from receiver (logic)
o undo/redo: commands can store state needed to reverse themselves

e macro/queue: compose commands or schedule them

« auditing: log/replay commands for diagnostics or recovery

Common use cases:

 UI buttons/menus, keyboard shortcuts

o editor actions: cut/copy/paste, insert, delete, format
o transactional operations with undo/redo stacks

e job queues, retries, and deferred execution

Worked example 1 — basic commands with undo (filesystem-like demo)

const fs = require('node:fs');

class Command {
execute() { throw new Error('execute() must be implemented');

undo () { }

class CreateFile extends Command {
constructor(path, text = 'new file created...') {

super(); this.path = path; this.text = text;
}
execute() {
fs.writeFileSync(this.path, this.text, 'utf8');
console.log( creating: ${this.path});
}
undo () {
fs.unlinkSync(this.path) ;
console.log( undo: deleting ${this.pathl}’);

class ReadFile extends Command {
constructor (path) { super(); this.path = path; }
execute() {
const content = fs.readFileSync(this.path, 'utf8');
console.log( reading: ${this.path} );
process.stdout.write(content) ;




class RenameFile extends Command {
constructor(src, dest) { super(); this.src = src; this.dest = dest; }
execute() {
fs.renameSync(this.src, this.dest);
console.log( renaming: ${this.src} to ${this.destl} );
}
undo () {
fs.renameSync(this.dest, this.src);
console.log( undo: ${this.dest} back to ${this.src} );

class CommandInvoker {
constructor() { this.history = []; }
run(cmd) {
cmd.execute() ;
if (typeof cmd.undo === 'function') this.history.push(cmd) ;
}
undo() {
const cmd = this.history.pop();
if (cmd && typeof cmd.undo === 'function') cmd.undo();

const invoker = new CommandInvoker() ;
const orig = 'filel.txt';
const renamed = 'file2.txt';

invoker.run(new CreateFile(orig, 'Hello command pattern'));
invoker.run(new ReadFile(orig));
invoker.run(new RenameFile(orig, renamed));

invoker.undo () ;
invoker.undo () ;

Why it works: The invoker only knows execute() / undo() . Each command encapsulates its own
receiver interactions and any state needed to reverse the action.

Worked example 2 — functional commands and a macro

const command = (doFn, undoFn = () => {}) => ({ execute: doFn, undo: undoFn });

const push = (arr, item) => command(
() => { arr.push(item); 1},
() => { arr.pop(O);

)




const macro = (...cmds) => command (
() => cmds.forEach((c) => c.execute()),
() => [...cmds] .reverse() .forEach((c) => c.undo())

)

const stack = [];

const addAB = macro(push(stack, 'A'), push(stack, 'B'));
addAB.execute() ;

console.log(stack) ;

addAB.undo () ;

console.log(stack);

Why it works: Commands don’t have to be classes in JS. A tiny factory returns an object with
execute/undo . Macro composes commands and reverses them on undo.

Worked example 3 — async command with retries (queue-friendly)

class ApiCallCommand {
constructor (fetchFn, url, { retries = 2 } = {}) {
this.fetchFn = fetchFn; this.url = url; this.retries = retries;
+
async execute() {
let attempt = 0; let lastErr;
while (attempt <= this.retries) {
try {
const res = await this.fetchFn(this.url);
console.log('0OK', res.status);
return res;
} catch (e) { lastErr = e; attempt++; }

}

throw lastErr;

Why it works: Commands can be scheduled/queued because they present a uniform execute() API,
regardless of synchronous or asynchronous behavior.

Edge cases and trade-offs

e overengineering: a simple function call may be enough — introduce commands when you need decou-
pling, undo/redo, queuing, or logging

o undo complexity: ensure actions are reversible (idempotency, compensating actions, and capturing
prior state)

e memory: deep undo stacks can grow, consider caps or snapshotting

e error handling: define how failures affect undo stacks and macros

e async: commands that partially succeed need clear compensation strategies



	Notes - JavaScript - Gang of Four - Behavioral - Command
	Dr Nick Hayward
	What is the Command pattern?
	Worked example 1 — basic commands with undo (filesystem‑like demo)
	Worked example 2 — functional commands and a macro
	Worked example 3 — async command with retries (queue‑friendly)
	Edge cases and trade‑offs

