
Comp 324/424 - Client-side Web Design

Fall Semester 2024 - Week 1

Dr Nick Hayward

Course details

Lecturer

• Name: Dr Nick Hayward
• Office hours

– Tuesday afternoon by appointment @ LSC
• Faculty Page

Course schedule

Important dates for this semester

• Mid-semester break
– NO class - Tuesday 8th October 2024

• Dev week demo & presentation
– due Tuesday 15th October 2024 @ 7pm

• Final project demo & presentation
– due Tuesday 3rd December 2024 @ 7pm

• Exam week: 9th to 14th December 2024
• Final project report

– due Tuesday 10th December 2024 @ 9.30pm

Coursework schedule

Presentations, reports &c.

• Dev week demo & presentation
– due Tuesday 15th October 2024 @ 7pm

• Final project demo & presentation
– due Tuesday 3rd December 2024 @ 7pm

• Final project report
– due Tuesday 10th December 2024 @ 9.30pm

Initial course plan - part 1

• Build and publish a web app from scratch
– general setup and getting started
– maintenance and publication

1

http://www.luc.edu/cs/people/ftfaculty/haywardnicholas.shtml

– basic development and manipulation (HTML, CSS, JS…)
– add some fun with Ajax, JSON, server-side…
– initial testing…

Initial course plan - part 2

• Augment and develop initial app
• Explore other options

– further libraries and options
– tools and workflows
– visualisations, graphics…
– publish (again…)

• Data options
– self hosted (MongoDB, Redis…)
– APIs
– cloud services, storage (Firebase, Heroku, Mongo…)
– Project management, build tools &c.

Assignments and coursework

Course will include

• weekly bibliography and reading (where applicable)
• weekly notes, code and app examples, extras…
• weekly videos

Coursework will include

• quizzes, exercises, and discussions
– each quiz will include multiple choice questions
– class and weekly discussion topics

• Dev Week demo & presentation
– due Tuesday 15th October 2024 @ 7pm

• end of semester final assessment
– final presentation and demo due Tuesday 3rd December 2024 @ 7pm
– final report due Tuesday 10th December 2024 @ 9.30pm

Credits available during course

• course participation = 30
• quizzes = 1 per question
• discussions &c. = 5 per discussion

– ~ 6 discussions during semester
• course project

– Dev week = 25
– final demo & report = 50

Participation

Course total = 30

2

• in-class participation & attendance
• participation in class discussions
• participation in group projects
• peer review of demos
• …

Quizzes, exercises & discussions

• quizzes and exercises
– test course knowledge at each stage
– help develop course project
– 1 credit per quiz question

• discussions
– sample websites, games, services…
– design topics, UI and UX concepts
– topics posted to Sakai Forum
– 5 credits per discussion topic

Project assessment

Initial overview

• combination project work
– part 1 = Dev week demo - 25 credits
– part 2 = Final demo and report - 50 credits

• group project (max. 5 persons per group)
• design and develop a web app

– purpose, scope &c. is group’s choice
∗ NO blogs, to-do lists, note-taking…
∗ NO content management systems (CMSs) such as Drupal, Joomla, WordPress…
∗ NO PHP, Python, Ruby, C# & .Net, Go, XML…
∗ NO CSS frameworks such as Bootstrap, Foundation, Materialize…

– must implement data from either
∗ self hosted (MongoDB, Redis…)
∗ APIs
∗ cloud services, storage (Firebase, Heroku, Mongo &c.)
∗ NO SQL…e.g. MySQL, PostgreSQL &c.

Dev week demo & assessment

Course total = 25 credits

• design and development of a web application
– built from scratch
– HTML5, CSS, plain JavaScript…

• continue design and development of initial project outline and design
• working app (as close as possible…)

– NO content management systems (CMSs) such as Drupal, Joomla, WordPress…
– NO PHP, Python, Ruby, C# & .Net, Java, Go, XML…
– NO CSS frameworks, such as Bootstrap, Foundation, Materialize…
– NO CSS preprocessors such as Sass…

3

– NO template tools such as Handlebars.js &c.
• data may be implemented from either

– self hosted (MongoDB, Redis…)
– APIs
– cloud services (Firebase…)
– NO SQL…e.g. (you may NOT use MySQL, PostgreSQL &c.)

• outline research conducted
• describe data chosen for application
• show any prototypes, patterns, and designs

Dev week demo & assessment

Dev week assessment will include the following:

• brief presentation or demonstration of current project work
– ~ 10 minutes per group
– analysis of work conducted so far

∗ e.g. during semester & DEV week
– presentation and demonstration

∗ outline current state of web app
∗ explain what works & does not work
∗ show implemented designs since project outline & mockup
∗ show latest designs and updates

– due Tuesday 15th October 2024 @ 7pm

Final project assessment

Course total = 50 credits

• continue to develop your app concept and prototypes
• working app

– NO content management systems (CMSs) such as Drupal, Joomla, WordPress…
– NO PHP, Python, Ruby, C# & .Net, Java, Go, XML…
– NO CSS frameworks, such as Bootstrap, Foundation, Materialize…
– NO CSS preprocessors such as Sass…
– NO template tools such as Handlebars.js &c.
– must implement data from either

∗ self hosted (MongoDB, Redis…)
∗ APIs
∗ cloud services (Firebase &c….)
∗ NO SQL…e.g. (you may NOT use MySQL, PostgreSQL &c.)

• explain design decisions
– describe patterns used in design of UI and interaction
– layout choices…
– what else did you consider, and then omit? (again, why?)

• show and explain implemented differences from DEV week
– where and why did you update the app?
– perceived benefits of the updates?

• how did you respond to peer review?

4

Final project assessment

Assessment will include the following:

• final presentation & demonstration of project work
– ~ 10 minutes per group
– analysis of work conducted during semester
– presentation and demonstration

∗ outline state of web app concept and design
∗ show final working version of web app

· explain designs, patterns &c.
· explain what does and does not work in the final app
· any other pertinent information on project design & development

• final project report
– written summary of project design, development, and research
– no word/page limit…
– suggested report outline will be provided

• final presentation and demo due Tuesday 3rd December 2024 @ 7pm
• final report due Tuesday 10th December 2024 @ 9.30pm

Goals of the course

A guide to developing and publishing interactive client-side web applications and publications.

Course will provide

• guide to developing client-side web applications from scratch
• guide to publishing web apps for public interaction and usage
• best practices and guidelines for development
• fundamentals of web application development
• intro to advanced options for client-side development
• …

Course resources - part 1

website Course website is available at https://csteach324-424.gitlab.io

• timetable
• course overview
• course blog
• weekly assignments & coursework
• bibliography
• links & resources
• course notes & extra notes
• videos

Course resources - part 2

GitLab

• course repositories available at https://gitlab.com/csteach324-424
– weekly notes
– examples

5

https://csteach324-424.gitlab.io
https://gitlab.com/csteach324-424

– source code (where applicable)

Intro to Client-side web design

• allows us to design and develop online resources and publications for users
– both static and interactive

• restrict publication to content
– text, images, video, audio…

• develop and publish interactive resources and applications
• client-side scripting allows us to offer

– interactive content within our webpages and web apps
• interaction is enabled via code that is downloaded and compiled, in effect, by the browser
• such interaction might include

– a simple mouse rollover or similar touch event
– user moving mouse over a menu

∗ simple but effective way of interacting

Client-side and server-side - Part 1

Client-side

• scripts and processes are run on the user’s machine, normally via a browser
– source code and app is transferred to the user’s machine for processing

• code is run directly in the browser
• predominant languages include HTML, CSS, and JavaScript (JS)

– HTML = HyperText Markup Language
– CSS = Cascading Style Sheets
– many compilers and transpilers now available to ease this development

∗ e.g. Go to JavaScript…
• reacts to user input
• code is often visible to the user (source can be read in developer mode etc…)
• in general, cannot store data beyond a page refresh

– HTML5 and local web APIs are changing this…
• in general, cannot read files directly from a server

– HTTP requests required
• single page apps create rendered page for the user

Client-side and server-side - Part 2

Server-side

• code is run on a server
– languages such as PHP, Ruby, Python, Java, C#…
– in effect, any code that can run and respond to HTTP requests can also run a server

• enables storage of persistent data
– data such as user accounts, preferences…

• code is not directly visible to the user
• responds to HTTP requests for a given URL
• can render the view for the user on the server side

and so on…

6

Getting started

• basic building blocks include HTML, CSS, and JS
• many tools available to work with these technologies
• three primary tools help with this type of development
• web browser

– such as Chrome, Edge, Firefox, Opera, Safari…
• editor

– such as Sublime, Microsoft’s Visual Studio Code…
• version control

– Git, (Mercurial, Subversion)
– GitHub, Bitbucket…

Getting started - Web Browsers

• choose your favourite
– Chrome, Firefox, Safari, Edge…
– not IE

• developer specific tools
– Chrome etc view source, developer tools, JS console
– Firefox also includes excellent developer tools

• cross-browser extension for web developers
– Web Developer

Getting started - Editors

Many different choices including

Linux, OS X, and Windows

• Sublime
• Visual Studio Code

OS X specific

• BBEdit
– TextWrangler

and so on.

Video - Atom 1.0

Source - YouTube - Introducing Atom 1.0

HTML - Intro

• acronym for HyperText Markup Language
• simple way to structure visual components of a website or web application

7

http://www.sublimetext.com/
https://code.visualstudio.com/
http://chrispederick.com/work/web-developer/
http://www.sublimetext.com/
https://code.visualstudio.com/
http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/textwrangler/
https://www.youtube.com/watch?v=Y7aEiVwBAdk

• HTML also uses keywords, or element tags
– follow a defined syntax

• helps us to create web pages and web applications
– web browsers, such as Chrome or Firefox, may render for viewing

• an error can stop a web page from rendering
– more likely it will simply cause incorrect page rendering

• interested in understanding the core of web page designing
– understand at least the basics of using HTML

HTML - structure of HTML

• basic HTML tag defines the entire HTML document
<html>
...

</html>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
...

</head>
<body>
...

</body>
</html>

HTML - Element syntax - part 1

Constructed using elements and attributes, which are embedded within an HTML document.

Elements should adhere to the following,

• start with an opening element tag, and close with a matching closing tag
– names may use characters in the range 0-9, a-z, A-Z

• content is, effectively, everything between opening and closing element tags
• elements may contain empty or void content
• empty elements should be closed in the opening tag
• most elements permit attributes within the opening tag

HTML - Element syntax - part 2

An element’s start tag adheres to a structured pattern, which may be as follows,

1. a < character
2. tag name
3. optional attributes, which are separated by a space character
4. optional space characters (one or more…)
5. optional / character, indicating a void element
6. a > character

For example,

8

<!-- opening element tag -->
<div>
<!-- void element -->

HTML - Element syntax - part 3

An element’s end tag also adheres to a pattern, again exactly as defined as following,

1. a < character
2. a / character
3. element’s tag name (i.e. name used in matching start tag)
4. optional space characters (one or more…)
5. a > character

For example,
<!-- element's matching end tag -->
</div>

NB: void elements, such as
 or , do not specify end tags.

HTML - Element syntax - part 4

• HTML, XHTML, can be written to follow the patterns and layouts of XML
• HTML elements can also be nested with a parent, child, sibling…

– relationship within the overall tree data structure for the document
• as the HTML page is loaded by a web browser

– the HTML DOM (document object model) is created
• basically a tree of objects that constitutes the underlying structure

– the rendered HTML page
• DOM gives us an API (application programming interface)

– a known way of accessing, manipulating the underlying elements, attributes, and content
• DOM very useful for JavaScript manipulation

Example - DOM structure & JavaScript

• traverse DOM tree with JavaScript generator

HTML - attribute syntax - part 1

• HTML attributes follow the same design pattern as XML
• provide additional information to the parent element
• placed in the opening tag of the element
• follow the standard syntax of name and value pairs
• many different permitted legal attributes in HTML
• four common names that are permitted within most HTML elements

– class , id , style , title

9

http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-dom/

HTML - attribute syntax - part 2

Four common names permitted within most HTML elements

• class
– specifies a classname for an element

• id
– specifies a unique ID for an element

• style
– specifies an inline style for an element

• title
– specifies extra information about an element
– can be displayed as a tooltip by default

NB:

• cannot use same name for two or more attributes
– regardless of case
– on the same element start tag

HTML - attribute syntax - part 3

A few naming rules for attributes

• empty attribute syntax
– <input disable>

• unquoted attribute-value syntax
– <input value=yes>
– value followed by / , at least one space character after the value and before /
– i.e. usage with a void element…

• single quoted attribute-value syntax
– <input type='checkbox'>

• double quoted attribute-value syntax
– <input title="hello">

NB:

• further specific restrictions may apply for the above
• consult W3 Docs for further details
• above examples taken from W3 Docs - Syntax Attributes Single Quoted

Example - HTML - custom attributes - part 1

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>JS tests - DOM creation - Attributes</title>

</head>
<body>
<header>
<h3>JS tests - DOM dynamic creation - Attribute Access</h3>

</header>
<section id="content">

10

http://www.w3.org/TR/html-markup/syntax.html#syntax-attributes
http://www.w3.org/TR/html-markup/syntax.html#syntax-attr-single-quoted

<p>
<blockquote id="berryhead" data-visible="true">
Shine through the gloom, and point me to the skies

</blockquote>
</p>

</section>
<script type="module" src="./attributes.js"></script>

</body>
</html>

Example - HTML - custom attributes - part 2

/*
* attributes.js
* - basic access for custom attributes
*/

// get example blockquote nodes
let quotes = document.body.getElementsByTagName('blockquote');

// loop through quotes - freeze quotes object using Array.from to create array
for (let quote of Array.from(quotes)) {
if (quote.getAttribute('data-visible')) {
quote.setAttribute('data-visible', 'false');

}
}

• example - Basic Attribute

Example - HTML - custom attributes - part 3

/*
* attributes.js
* - basic access for custom attributes
* - add event listener for mouse click
*/

// get example blockquote nodes
let quote = document.getElementById('berryhead');

// add event listener to quotes object
quote.addEventListener('click', () => {
if (quote.getAttribute('data-visible') === 'true') {

quote.setAttribute('data-visible', 'false');
quote.style.color = '#779eab';

} else {
quote.setAttribute('data-visible', 'true');
quote.style.color = '#000';

}
});

11

http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-attribute/

• example - Basic Attribute 2
• MDN - Using Dynamic Styling Information

HTML - Doctype - HTML5

• DOCTYPE is a special instruction to the web browser
– concerning the required processing mode for rendering the document’s HTML

• doctype is a required part of the HTML document
• first part of our HTML document
• should always be included at the top of a HTML document, e.g.

<!DOCTYPE html>

or
<!doctype html>

• doctype we add for HTML5 rendering
• not a HTML element, simply tells the browser required HTML version for rendering

DOM Basics - intro

Figure 1: HTML DOM

A brief introduction to the document object model (DOM)

• Source - W3Schools - JS HTML DOM

12

http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-attribute2/
https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model/Using_dynamic_styling_information
http://www.w3schools.com/js/js_htmldom.asp

DOM Basics - what is DOM?

• DOM is a platform and language independent way
– to access and manipulate underlying structure of HTML document

• structured as a representation of a tree data structure
– its manipulation follows this same, standard principle

• DOM tree is constructed using a set of nodes
– tree is designed as a hierarchical representation of the underlying document

• each node on our tree is an element within our HTML document
• inherent hierarchical order originates with the root element

– root sits at the top of our tree
– descends down following lineage from node to node

• each node is a child to its parent
– we can find many siblings per node as well

• root at the top of the tree…

Image - HTML DOM

Figure 2: HTML DOM

DOM Basics - useful elements

element tag usage & description

<html> container element for a HTML document

13

element tag usage & description

<head> contains metadata and document information
<body> contains main content rendered as the HTML document
<header> page header…
<nav> navigation, stores and defines a set of links for internal or external navigation
<main> defined primary content area of document
<footer> page footer…
<section> a section of a page or document
<article> suitable for organising and containing independent content
<aside> defines content aside from the content which contains this element
<figure> logical grouping of image and caption
 image - can be local or remote using url in src attribute

<figcaption> image caption

<h1>, <h2>... headings from 1 to 6 (1 = largest)

<a> anchor - link to another anchor, document, site…
<p> paragraph

, , <dl> unordered, ordered, definition lists

 list item, used with , ...
<dt> definition term, used with <dl>
<dd> definition description, used with <dl>

<table > standard table with rows, columns…
<tr> > table row, used with <table>
<th> table heading, used with <table> and child to <tr>
<td> table cell, used with <table> and child to <tr>
<div> non-semantic container for content, similar concept to <section>
 group inline elements in a HTML document
<canvas> HTML5 element for drawing on the HTML page
<video> HTML5 element for embedding video playback
<audio> HTML5 element for embedding audio playback

NB: <div> and can be used as identifiers when there is no other suitable element to define
parts of a HTML5 document. e.g. if there is no defined or significant semantic meaning…

DOM Basics - sample

<!DOCTYPE html>
<html>
<head>
<base href="media/images/">
<meta charset="UTF-8">
<!-- demo-->
<title>Demo</title>

</head>
<body>
<header>

14

<h1>Ancient Egypt</h1>
</header>
<nav>...</nav>
<main>
<section>
<p>
Welcome to the Ancient Egypt information site.

</p>
<figure>
<img src="philae-demo2.jpg" alt="philae temple" width="333px"
height="200px">
<figcaption>Ptolemaic temple at Philae, Egypt</figcaption>

</figure>
</section>
<aside>
Temple at Philae in Egypt is Ptolemaic era of Egyptian history.

</aside>
</main>
<footer>
foot of the page...

</footer>
</body>

</html>

• Demo - DOM Basics - Sample

DOM Basics - index.html page

index.html usage and structure

• basic index.html page for loading web apps
• app will start with the index.html document

– html pages saved as .html or .htm
– .html more common…

• index.html acts as a kickstart
– for loading and rendering the app
– loads other app resources - CSS, JS…

• consistent elements in the HTML DOM
– <html> , <head> , and <body>

• HTML5 apps will add
– <header> , <main> , and <footer> (when required)
– many other elements for building the app…

15

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo1/

Demos

• Basic Attribute
• Basic Attribute 2
• Basic Structural Example
• DOM Basics - Sample
• Traverse DOM tree with JavaScript generator

References

• Jaffe, Jim., Application Foundations For The Open Web Platform. W3C. 10.14.2014. http://www.w3
.org/blog/2014/10/application-foundations-for-the-open-web-platform/

• JS Info - DOM Nodes
• W3 Docs for further details

16

http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-attribute/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-attribute2/
https://luc-metrics.herokuapp.com/stats/astropy
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo1/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week1/basic-dom/
http://www.w3.org/blog/2014/10/application-foundations-for-the-open-web-platform/
http://www.w3.org/blog/2014/10/application-foundations-for-the-open-web-platform/
https://javascript.info/dom-nodes
http://www.w3.org/TR/html-markup/syntax.html#syntax-attributes

	Course details
	Course schedule
	Coursework schedule
	Initial course plan - part 1
	Initial course plan - part 2
	Assignments and coursework
	Credits available during course
	Participation
	Quizzes, exercises & discussions
	Project assessment
	Dev week demo & assessment
	Dev week demo & assessment
	Final project assessment
	Final project assessment
	Goals of the course
	Course resources - part 1
	Course resources - part 2
	Intro to Client-side web design
	Client-side and server-side - Part 1
	Client-side and server-side - Part 2
	Getting started
	Getting started - Web Browsers
	Getting started - Editors
	Video - Atom 1.0
	HTML - Intro
	HTML - structure of HTML
	HTML - Element syntax - part 1
	HTML - Element syntax - part 2
	HTML - Element syntax - part 3
	HTML - Element syntax - part 4
	Example - DOM structure & JavaScript
	HTML - attribute syntax - part 1
	HTML - attribute syntax - part 2
	HTML - attribute syntax - part 3
	Example - HTML - custom attributes - part 1
	Example - HTML - custom attributes - part 2
	Example - HTML - custom attributes - part 3
	HTML - Doctype - HTML5
	DOM Basics - intro
	DOM Basics - what is DOM?
	Image - HTML DOM
	DOM Basics - useful elements
	DOM Basics - sample
	DOM Basics - index.html page
	Demos
	References

