
Comp 324/424 - Client-side Web Design

Fall Semester 2024 - Week 5

Dr Nick Hayward

JS Core - closures - part 1

• important and useful aspect of JavaScript
• dealing with variables and scope

– continued, broader access to ongoing variables via a function’s scope
• closures as a useful construct to allow us to access a function’s scope

– even after it has finished executing
• can give us something similar to a private variable

– then access through another variable using relative scopes of outer and inner
• inherent benefit is that we are able to repeatedly access internal variables

– normally cease to exist once a function had executed

JS Core - closures - example - 1

//value in global scope
var outerVal = "test1";

//declare function in global scope
function outerFn() {

//check & output result...
console.log(outerVal === "test1" ? "test is visible..." : "test not visible...");

}

//execute function
outerFn();

Image - JS Core - closures - global scope

Figure 1: JS Core - Closures - global scope

1

Video - JS Core

closures - part 1 Closures in JavaScript - UP TO 3:17

Source - JavaScript Closures - YouTube

JS Core - closures - example - 2

"use strict";

function addTitle(a) {
var title = "hello ";
function updateTitle() {

var newTitle = title+a;
return newTitle;

}
return updateTitle;

}

var buildTitle = addTitle("world");
console.log(buildTitle());

JS Core - closures - part 2

Why use closures?

• use closures a lot in JavaScript
– real driving force behind Node.js, jQuery, animations…

• closures help reduce amount, complexity of code necessary for advanced features
• closures help us add otherwise impossible features, e.g.

– any task using callbacks - event handlers…
– private object variables…

• closure allows us to work with a function that has been defined within another scope
– still has access to all variables within the defined outer scope
– helps create basic encapsulated data
– store data in a separate scope - then share it where needed

JS Core - closures - part 3

function count(a) {
return function(b) {

return a + b;
}

}

var add1 = count(1);
var add5 = count(5);
var add10 = count(10);

console.log(add1(8));

2

https://www.youtube.com/watch?v=CQqwU2Ixu-U

console.log(add5(8));
console.log(add10(8));

• using one function to create multiple other functions, add1 , add5 , add10 , and so on.

Video - JS Core

closures - part 2 Closures in JavaScript - UP TO 5:21

Source - JavaScript Closures - YouTube

JS Core - closures - example - 3

// variables in global scope
var outerVal = "test2";
var laterVal;

function outerFn() {
// inner scope variable declared with value - scope limited to function
var innerVal = "test2inner";
// inner function - can access scope from parent function & variable innerVal
function innerFn() {

console.log(outerVal === "test2" ? "test2 is visible" : "test2 not visible");
console.log(innerVal === "test2inner" ? "test2inner is visible" : "test2inner is not visible");

}
// inner function now added to global scope - now able to access elsewhere & call later
laterVal = innerFn;

}
// invokes outerFn, innerFn is created, and its reference assigned to laterVal
outerFn();
// THEN - innerFn is invoked using laterVal - can't access innerFn directly...
laterVal();

Image - JS Core - closures - inner scope

Figure 2: JS Core - Closures - inner scope

JS Core - closures - part 4

• how is the innerVal variable available when we execute the inner function?

3

https://www.youtube.com/watch?v=CQqwU2Ixu-U

– this is why closures are such an important and useful concept in JavaScript
– use of closures creates a sense of persistence in the scope

• closures help create
– scope persistence
– delayed access to functions and variables

• closure creates a safe wrapper around
– the function
– variables that are in scope as a function is defined

• closure ensures function has everything necessary for correct execution
• closure wrapper persists whilst function exists

n.b. closure usage is not memory free - there is an impact on app memory and usage…

Video - JS Core

closures - part 3 Closures in JavaScript - UP TO 6:20

Source - JavaScript Closures - YouTube

JS core - this

• this keyword - correct and appropriate usage
– commonly misunderstood feature of JS

• value of this is not inherently linked with the function itself
• value of this determined in response to how the function is called
• value itself can be dynamic, simply based upon how the function is called
• if a function contains this , its reference will usually point to an object

JS core - this - part 1

global, window object

• when we call a function, we can bind the this value to the window object
• resultant object refers to the root, in essence the global scope

function test1() {
console.log(this);

}

test1();

• NB: the above will return a value of undefined in strict mode.
• also check for the value of this relative to the global object,

var a = 49;

function test1() {
console.log(this.a);

}

test1();

• JSFiddle - this - window

4

https://www.youtube.com/watch?v=CQqwU2Ixu-U
http://jsfiddle.net/ancientlives/o6d77tye/

• JSFiddle - this - global

JS core - this - part 2

object literals

• within an object literal, the value of this , thankfully, will always refer to its own object
var object1 = {

method: test1
};

function test1() {
console.log(this);

}

object1.method();

• return value for this will be the object itself
• we get the returned object with a property and value for the defined function
• other object properties and values will be returned and available as well
• JSFiddle - this - literal
• JSFiddle - this - literal 2

JS core - this - part 3

var sites = {};
sites.name = "philae";

sites.titleOutput = function() {
console.log("Egyptian temples...");

};

sites.objectOutput = function() {
console.log(this);

};

console.log(sites.name);
sites.objectOutput();
sites.titleOutput();

object literals

Image - Object literals console output

JS core - this - part 4

events

• for events, value of this points to the owner of the bound event

5

http://jsfiddle.net/ancientlives/2r4grha1/
http://jsfiddle.net/ancientlives/d93bkbq8/
http://jsfiddle.net/ancientlives/kt3g4wou/

Figure 3: JS - this - object literals output

<div id="test">click to test...</div>

var testDiv = document.getElementById('test');

function output() {
console.log(this);

};

testDiv.addEventListener('click', output, false);

• element is clicked, value of this becomes the clicked element
• also change the context of this using built-in JS functions

– such as .apply() , .bind() , and .call()
• JSFiddle - this - events

HTML5, CSS, & JS - example - part 13

interaction - add a note - keyboard listener - plain JS

• need to consider how to handle keyboard events
• listening and responding to a user hitting the return key in the input field
• similar pattern to user click on button

// add event listener for keypress in note input field
inputNote.addEventListener('keypress', (e) => {

// check key pressed by code - 13 - return
if (e.keyCode === 13) {

console.log('return key pressed...');
}

});

• need to abstract handling both button click and keyboard press
• need to be selective with regard to keys pressed
• add a conditional check to our listener for a specific key
• use local variable from the event itself, e.g. e , to get value of key pressed
• compare value of e against key value required
• example recording keypresses

– Demo Editor

6

http://jsfiddle.net/ancientlives/e5ekrk1w/
http://linode4.cs.luc.edu/teaching/cs/demos/441/edit/v1/

Video - Users and interaction

digital accessibility What is digital accessibility?

Source - Digital Accessibility - YouTube

JS Core - checking equality - part 1

• JS has four equality operators, including two not equal
– == , === , != , !==

• == - checks for value equality, whilst allowing coercion
• === - checks for value equality but without coercion

var a = 49;
var b = "49";

console.log(a == b); //returns true
console.log(a === b); //returns false

• first comparison checks values
– if necessary, try to coerce one or both values until a match occurs
– allows JS to perform a simple equality check
– results in true

• second check is simpler
– coercion is not permitted, and a simple equality check is performed
– results in false

JS Core - checking equality - part 2

• which comparison operator should we use
• useful suggestions for usage of comparison operators

– use === if either side of the comparison could be true or false
– use === if either value could be one of the following specific values,

∗ 0 , "" , []
– otherwise, it’s safe to use ==
– simplify code in a JS application due to the implicit coercion.

• not equal counterparts, ! and !== work in a similar manner

JS Core - checking inequality - part 1

• known as relational comparison, we can use the inequality operators,
– < , > , <= , >=

• inequality operators often used to check comparable values like numbers
– inherent ordinal check

• can be used to compare strings
"hello" < "world"

• coercion also occurs with inequality operators
– no concept of strict inequality

var a = 49;
var b = "59";

7

https://www.youtube.com/watch?v=grrx2Lva7T0

var c = "69";

a < b; //returns true
b < c; //returns true

JS Core - checking inequality - part 2

• we can encounter an issue when either value cannot be coerced into a number
var a = 49;
var b = "nice";

a < b; //returns false
a > b; //returns false
a == b; //returns false

• issue for < and > is string is being coerced into invalid number value, NaN
• == coerces string to NaN and we get comparison between 49 == NaN

HTML5, CSS, & JS - example - part 14

interaction - add a note - abstract code

• need to create a new function to abstract
– creation and output of a new note
– manage the input field for our note app

• moving logic from button click function to separate, abstracted function
• then call this function as needed

– for a button click or keyboard press
– then create and render the new note

// create a note
// - input = value from input field
// - output = DOM node for output of new note
function createNote(input, output) {

// create p node
let p = document.createElement('p');
// get value from input field for note
let inputVal = input.value;
// check input value
if (inputVal !== '') {

// create text node
let noteText = document.createTextNode(inputVal);
// append text to paragraph
p.appendChild(noteText);
// append new paragraph and text to existing note output
output.appendChild(p);
// clear input text field
input.value = '';

}
}

8

HTML5, CSS, & JS - example - part 15

function travelNotes() {
"use strict";

// get a reference to `.note_output` in the DOM
let noteOutput = document.querySelector('.note-output');
// add note button
let addNoteBtn = document.getElementById('add-note');
// input field for add note
let inputNote = document.getElementById('input-note');

// add event listener to add note button
addNoteBtn.addEventListener('click', () => {

createNote(inputNote, noteOutput);
});

// add event listener for keypress in note input field
inputNote.addEventListener('keypress', (e) => {

// check key pressed by code - 13 - return
if (e.keyCode === 13) {

createNote(inputNote, noteOutput);
}

});

}

// load app
travelNotes();

interaction - add a note - plain JS

• DEMO - travel notes - series 1

HTML5, CSS, & JS - example - part 16

interaction - add a note - animate

• JavaScript well-known for is its simple ability to animate elements
• many built-in effects available in various JS animation libraries

– build our own as well
• to fadeIn an element, effectively it needs to be hidden first
• we hide our newly created note
• then we can set it to fadeIn when ready

– …
• DEMO - travel notes - series 1

CSS Basics - complex selector - part 1

• our DOM will often become more complicated and detailed
• depth and complexity will require more complicated selectors as well
• lists and their list items are a good example

9

http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo7/

unordered first
unordered second
unordered third

ordered first
ordered second
ordered third

• two lists, one unordered and the other ordered
• style each list, and the list items using rulesets

ul {
border: 1px solid green;

}
ol {

border: 1px solid blue;
}

Demo - Complex Selectors - Part 1

• Demo - Complex Selectors Part 1

CSS Basics - complex selector - part 2

• add a ruleset for the list items,
• applying the same style properties to both types of lists
• more specific to apply a ruleset to each list item for the different lists

ul li {
color: blue;

}
ol li {

color: red;
}

• also be useful to set the background for specific list items in each list
li:first-child {

background: #bbb;
}

• pseudoclass of nth-child to specify a style for the second, fourth &c. child in the list
li:nth-child(2) {

background: #ddd;
}

Demo - Complex Selectors - Part 2

• Demo - Complex Selectors Part 2

10

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/

CSS Basics - complex selector - part 3

• style odd and even list items to create a useful alternating pattern
li:nth-child(odd) {

background: #bbb;
}
li:nth-child(even) {

background: #ddd;
}

• select only certain list items, or rows in a table &c.
– e.g. every fourth list item, starting at the first one

li:nth-child(4n+1) {
background: green;

}

• for even and odd children we’re using the above with convenient shorthand
• other examples include

– last-child
– nth-last-child()
– many others…

Demo - CSS Complex Selectors - Part 3

• Demo - Complex Selectors Part 3

HTML5, CSS, & JS - example - part 17

style and render notes

• we have some new notes in our app
• add some styling to help improve the look and feel of a note
• can set background colours, borders font styles…
• set differentiating colours for each alternate note
• allows us to try some pseudoclasses in the CSS

– specified paragraphs in the note-output section
.note-output p:nth-child(even) {

background-color: #ccc;
}
.note-output p:nth-child(odd) {

background-color: #eee;
}

• DEMO - travel notes - series 1

HTML5, CSS, & JS - final thoughts

• a basic app that records simple notes
• many additional options we can add

11

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo8/

• some basic functionality is needed to make it useful
– autosave - otherwise we lose our data each time we refresh the browser
– edit a note
– delete a note
– add author information

• additional functionality might include
– save persistent data to DB, name/value pairs…
– organise and view collections of notes
– add images and other media

∗ local and APIs
– add contextual information

∗ again, local and APIs
– structure notes, media, into collection
– define related information
– search, sort…
– export options and sharing…

• security, testing, design patterns

Video - Scotoma - Da Vinci Code

Scotoma - The Da Vinci Code - Source: YouTube

Demos

CSS

• CSS - Complex Selectors Part 1
• CSS - Complex Selectors Part 2
• CSS - Complex Selectors Part 3

Travel Notes - series 1

• travel notes - demo 6
• travel notes - demo 7
• travel notes - demo 8

References

• CSS Selectors
• JS

– MDN - JS
– JS Info - DOM Nodes

∗ MDN - JS Objects
∗ W3 Schools - JS

12

https://www.youtube.com/watch?v=tfL5f6cZlk8
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo7/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo8/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://javascript.info/dom-nodes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
http://www.w3schools.com/js/default.asp

	JS Core - closures - part 1
	JS Core - closures - example - 1
	Image - JS Core - closures - global scope
	Video - JS Core
	JS Core - closures - example - 2
	JS Core - closures - part 2
	JS Core - closures - part 3
	Video - JS Core
	JS Core - closures - example - 3
	Image - JS Core - closures - inner scope
	JS Core - closures - part 4
	Video - JS Core
	JS core - this
	JS core - this - part 1
	JS core - this - part 2
	JS core - this - part 3
	Image - Object literals console output
	JS core - this - part 4
	HTML5, CSS, & JS - example - part 13
	Video - Users and interaction
	JS Core - checking equality - part 1
	JS Core - checking equality - part 2
	JS Core - checking inequality - part 1
	JS Core - checking inequality - part 2
	HTML5, CSS, & JS - example - part 14
	HTML5, CSS, & JS - example - part 15
	HTML5, CSS, & JS - example - part 16
	CSS Basics - complex selector - part 1
	Demo - Complex Selectors - Part 1
	CSS Basics - complex selector - part 2
	Demo - Complex Selectors - Part 2
	CSS Basics - complex selector - part 3
	Demo - CSS Complex Selectors - Part 3
	HTML5, CSS, & JS - example - part 17
	HTML5, CSS, & JS - final thoughts
	Video - Scotoma - Da Vinci Code
	Demos
	References

