Comp 324/424 - Client-side Web Design

Fall Semester 2024 - Week 5

Dr Nick Hayward

JS Core - closures - part 1

« important and useful aspect of JavaScript
e dealing with variables and scope
— continued, broader access to ongoing variables via a function’s scope
e closures as a useful construct to allow us to access a function’s scope
— even after it has finished executing
e can give us something similar to a private variable
— then access through another variable using relative scopes of outer and inner
e inherent benefit is that we are able to repeatedly access internal variables
— normally cease to exist once a function had executed

JS Core - closures - example - 1

var outerVal = "testl";

function outerFn() {

console.log(outerVal === "testl" ? "test is visible..." : "test not visible...

}

outerFn();

Image - JS Core - closures - global scope

test is wvisible...
test.js (13,2)

Figure 1: JS Core - Closures - global scope

Video - JS Core
closures - part 1 Closures in JavaScript - UP TO 3:17

Source - JavaScript Closures - YouTube

JS Core - closures - example - 2

"use strict";

function addTitle(a) {
var title = "hello ";
function updateTitle() {
var newTitle = title+a;
return newTitle;
}

return updateTitle;

var buildTitle = addTitle("world");
console.log(buildTitle()) ;

JS Core - closures - part 2
Why use closures?

e use closures a lot in JavaScript
— real driving force behind Node.js, jQuery, animations...
e closures help reduce amount, complexity of code necessary for advanced features
o closures help us add otherwise impossible features, e.g.
— any task using callbacks - event handlers...
— private object variables...
e closure allows us to work with a function that has been defined within another scope
— still has access to all variables within the defined outer scope
— helps create basic encapsulated data
— store data in a separate scope - then share it where needed

JS Core - closures - part 3

function count(a) {
return function(b) {
return a + b;
+
}

var addl = count(1);
var add5 = count(5);
var add10 = count(10);

console.log(add1(8));

https://www.youtube.com/watch?v=CQqwU2Ixu-U

console.log(add5(8));

console.log(add10(8));

e using one function to create multiple other functions, addl , add5 , add10 , and so on.

Video - JS Core

closures - part 2 Closures in JavaScript - UP TO 5:21

Source - JavaScript Closures - YouTube

JS Core - closures - example - 3

var outerVal = "test2";
var laterVal,;

function outerFn() {
var innerVal = "test2inner";

function innerFn() {

console.log(outerVal === "test2" 7 "test2 is visible" : "test2 not visible");
console.log(innerVal === "test2inner" ? "test2inner is visible" : "test2inner is not V|

}

laterVal = innerFn;

outerFn() ;

laterVal();

Image - JS Core - closures - inner scope

test2 is wisible
test.js (15,5)
test2inner is visible
test.js (16,5)

Figure 2: JS Core - Closures - inner scope

JS Core - closures - part 4

e how is the inmerVal variable available when we execute the inner function?

https://www.youtube.com/watch?v=CQqwU2Ixu-U

— this is why closures are such an important and useful concept in JavaScript
— use of closures creates a sense of persistence in the scope
e closures help create
— scope persistence
— delayed access to functions and variables
« closure creates a safe wrapper around
— the function
— variables that are in scope as a function is defined
e closure ensures function has everything necessary for correct execution
e closure wrapper persists whilst function exists

n.b. closure usage is not memory free - there is an impact on app memory and usage...

Video - JS Core
closures - part 3 Closures in JavaScript - UP TO 6:20

Source - JavaScript Closures - YouTube

JS core - this

e this keyword - correct and appropriate usage
— commonly misunderstood feature of JS
e value of this is not inherently linked with the function itself
e value of this determined in response to how the function is called
e value itself can be dynamic, simply based upon how the function is called
o if a function contains this , its reference will usually point to an object

JS core - this - part 1
global, window object

o when we call a function, we can bind the this value to the window object
 resultant object refers to the root, in essence the global scope

function test1() {
console.log(this);

}

test1();

e NB: the above will return a value of undefined in strict mode.
¢ also check for the value of this relative to the global object,

var a = 49;

function test1() {

console.log(this.a);

testl1();

o JSFiddle - this - window

https://www.youtube.com/watch?v=CQqwU2Ixu-U
http://jsfiddle.net/ancientlives/o6d77tye/

e JSFiddle - this - global

JS core - this - part 2
object literals

o within an object literal, the value of this , thankfully, will always refer to its own object

var objectl = {
method: testl

};

function test1() {
console.log(this);

objectl.method();

e return value for this will be the object itself

o we get the returned object with a property and value for the defined function
e other object properties and values will be returned and available as well

o JSFiddle - this - literal

o JSFiddle - this - literal 2

JS core - this - part 3

var sites = {};
sites.name = "philae";

sites.titleOutput = function() {
console.log("Egyptian temples...");

};

sites.objectOutput = function() {
console.log(this);
s

console.log(sites.name);
sites.objectOutput () ;
sites.titleOutput();

object literals

Image - Object literals console output
JS core - this - part 4
events

o for events, value of this points to the owner of the bound event

http://jsfiddle.net/ancientlives/2r4grha1/
http://jsfiddle.net/ancientlives/d93bkbq8/
http://jsfiddle.net/ancientlives/kt3g4wou/

philae

test.js (22,1)

p [object Object] {name: "philas"}
test.js (19,3)

Egyptian temples...

test.js (15,3)

Figure 3: JS- this - object literals output

<div id="test">click to test...</div>

var testDiv = document.getElementById('test');

function output() {
console.log(this);
T

testDiv.addEventListener('click', output, false);

e element is clicked, value of this becomes the clicked element

¢ also change the context of this using built-in JS functions
— such as .apply() , .bind() ,and .callQ)

o JSFiddle - this - events

HTMLS5, CSS, & JS - example - part 13
interaction - add a note - keyboard listener - plain JS

e need to consider how to handle keyboard events
« listening and responding to a user hitting the return key in the input field
e similar pattern to user click on button

inputNote.addEventListener ('keypress', (e) => {

if (e.keyCode === 13) {

console.log('return key pressed...');

}
B

e need to abstract handling both button click and keyboard press
e need to be selective with regard to keys pressed
e add a conditional check to our listener for a specific key
e use local variable from the event itself, e.g. e , to get value of key pressed
e compare value of e against key value required
e example recording keypresses
— Demo Editor

http://jsfiddle.net/ancientlives/e5ekrk1w/
http://linode4.cs.luc.edu/teaching/cs/demos/441/edit/v1/

Video - Users and interaction
digital accessibility What is digital accessibility?
Source - Digital Accessibility - YouTube

JS Core - checking equality - part 1

e JS has four equality operators, including two not equal

== === |= ==
) :)

e == - checks for value equality, whilst allowing coercion
e === - checks for value equality but without coercion

var b = "49";

console.log(a
console.log(a

o first comparison checks values
— if necessary, try to coerce one or both values until a match occurs
— allows JS to perform a simple equality check
— results in true

e second check is simpler
— coercion is not permitted, and a simple equality check is performed
— results in false

JS Core - checking equality - part 2

e which comparison operator should we use
o useful suggestions for usage of comparison operators

— use === if either side of the comparison could be true or false
— use === if either value could be one of the following specific values,
* 0 , nn , []

— otherwise, it’s safe to use ==
— simplify code in a JS application due to the implicit coercion.
e not equal counterparts, ! and !== work in a similar manner

JS Core - checking inequality - part 1

e known as relational comparison, we can use the inequality operators,
— <, >, <=, >=

e inequality operators often used to check comparable values like numbers
— inherent ordinal check

e can be used to compare strings
"hello" < "world"

e coercion also occurs with inequality operators
— no concept of strict inequality
var a = 49;
var b = "59";

https://www.youtube.com/watch?v=grrx2Lva7T0

var ¢ = "69";

a < b;
b < c;

JS Core - checking inequality - part 2

e we can encounter an issue when either value cannot be coerced into a number
var a = 49;
var b = "nice";

e issue for < and > is string is being coerced into invalid number value, NaN

e == coerces string to NaN and we get comparison between 49 == NalN

HTML5, CSS, & JS - example - part 14
interaction - add a note - abstract code

e need to create a new function to abstract

— creation and output of a new note

— manage the input field for our note app
e moving logic from button click function to separate, abstracted function
e then call this function as needed

— for a button click or keyboard press

— then create and render the new note

function createNote(input, output) {
let p = document.createElement('p');
let inputVal = input.value;

if (inputVal !== '') {

let noteText = document.createTextNode (inputVal) ;

p-appendChild (noteText) ;
output.appendChild(p) ;

input.value = '';

}

HTMLS5, CSS, & JS - example - part 15

function travelNotes() {
"use strict";

let noteOutput document . querySelector('.note-output');

let addNoteBtn = document.getElementById('add-note');

let inputNote = document.getElementById('input-note');

addNoteBtn.addEventListener('click', () => {

1D

createNote (inputNote, noteOutput);

inputNote.addEventListener ('keypress', (e) => {

if (e.keyCode === 13) {

createNote (inputNote, notelutput);

}

B

travelNotes () ;

interaction - add a note - plain JS

DEMO - travel notes - series 1

HTMLS5, CSS, & JS - example - part 16

interaction - add a note - animate

CSS

JavaScript well-known for is its simple ability to animate elements
many built-in effects available in various JS animation libraries
— build our own as well
to fadeIn an element, effectively it needs to be hidden first
we hide our newly created note
then we can set it to fadeIn when ready

DEMO - travel notes - series 1

Basics - complex selector - part 1

our DOM will often become more complicated and detailed
depth and complexity will require more complicated selectors as well
lists and their list items are a good example

http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo7/

unordered first</1i>
unordered second</1i>
unordered third</1li>

ordered first</1li>
ordered second</1li>
ordered third</1li>

e two lists, one unordered and the other ordered

o style each list, and the list items using rulesets
ul {

border: 1px solid green;

}

ol {
border: 1px solid blue;

3

Demo - Complex Selectors - Part 1

¢ Demo - Complex Selectors Part 1

CSS Basics - complex selector - part 2

e add a ruleset for the list items, <1i>
« applying the same style properties to both types of lists
o more specific to apply a ruleset to each list item for the different lists

ul 1i {
color: blue;

3

ol 1i {
color: red;

« also be useful to set the background for specific list items in each list
1i {

background: #Dbbb;
}

e pseudoclass of nth-child to specify a style for the second, fourth &c. child in the list
1i {

background: #ddd;

}

Demo - Complex Selectors - Part 2

e Demo - Complex Selectors Part 2

10

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/

CSS Basics - complex selector - part 3

e style odd and even list items to create a useful alternating pattern

{
background: #Dbbb;

{
background: #ddd;

« select only certain list items, or rows in a table &c.
— e.g. every fourth list item, starting at the first one

1i {

background: green;

}

o for even and odd children we’re using the above with convenient shorthand
e other examples include

last-child

— nth-last-child ()

— many others...

Demo - CSS Complex Selectors - Part 3

e Demo - Complex Selectors Part 3

HTML5, CSS, & JS - example - part 17
style and render notes

e we have some new notes in our app
o add some styling to help improve the look and feel of a note
e can set background colours, borders font styles...
o set differentiating colours for each alternate note
o allows us to try some pseudoclasses in the CSS
— specified paragraphs in the note-output section

.note-output p
background-color: #ccc;

i
.note-output p
background-color: #eee;

}

e DEMO - travel notes - series 1

HTMLS5, CSS, & JS - final thoughts

e a basic app that records simple notes
« many additional options we can add

11

http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo8/

e some basic functionality is needed to make it useful

autosave - otherwise we lose our data each time we refresh the browser
edit a note

delete a note

add author information

o additional functionality might include

save persistent data to DB, name/value pairs...
organise and view collections of notes
add images and other media
x local and APIs
add contextual information
* again, local and APIs
structure notes, media, into collection
define related information
search, sort...
export options and sharing...

e security, testing, design patterns

Video - Scotoma - Da Vinci Code

Scotoma -

Demos

CSS

The Da Vinci Code - Source: YouTube

e (CSS - Complex Selectors Part 1
e (CSS - Complex Selectors Part 2
e CSS - Complex Selectors Part 3

Travel Notes - series 1

o travel notes - demo 6
e travel notes - demo 7
e travel notes - demo 8

References

e (CSS Selectors

« JS

MDN - JS

JS Info - DOM Nodes
* MDN - JS Objects
* W3 Schools - JS

12

https://www.youtube.com/watch?v=tfL5f6cZlk8
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo3/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo4/
http://linode4.cs.luc.edu/teaching/cs/demos/424/week3/demo5/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo6/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo7/
http://linode4.cs.luc.edu/teaching/cs/demos/424/2017/series1/demo8/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://javascript.info/dom-nodes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects
http://www.w3schools.com/js/default.asp

	JS Core - closures - part 1
	JS Core - closures - example - 1
	Image - JS Core - closures - global scope
	Video - JS Core
	JS Core - closures - example - 2
	JS Core - closures - part 2
	JS Core - closures - part 3
	Video - JS Core
	JS Core - closures - example - 3
	Image - JS Core - closures - inner scope
	JS Core - closures - part 4
	Video - JS Core
	JS core - this
	JS core - this - part 1
	JS core - this - part 2
	JS core - this - part 3
	Image - Object literals console output
	JS core - this - part 4
	HTML5, CSS, & JS - example - part 13
	Video - Users and interaction
	JS Core - checking equality - part 1
	JS Core - checking equality - part 2
	JS Core - checking inequality - part 1
	JS Core - checking inequality - part 2
	HTML5, CSS, & JS - example - part 14
	HTML5, CSS, & JS - example - part 15
	HTML5, CSS, & JS - example - part 16
	CSS Basics - complex selector - part 1
	Demo - Complex Selectors - Part 1
	CSS Basics - complex selector - part 2
	Demo - Complex Selectors - Part 2
	CSS Basics - complex selector - part 3
	Demo - CSS Complex Selectors - Part 3
	HTML5, CSS, & JS - example - part 17
	HTML5, CSS, & JS - final thoughts
	Video - Scotoma - Da Vinci Code
	Demos
	References

