Notes - JavaScript - Design Principles - Foundational - Encapsulation
Dr Nick Hayward

A brief introduction to encapsulation as a design principle in JavaScript/TypeScript.

Contents

e Intro

e Principle — encapsulate what varies

o Techniques for encapsulation (JavaScript)

e Example — encapsulation with polymorphism

» Example — encapsulation with properties (get/set and private fields)
o Bonus — encapsulation via strategy (composition)

o Edge cases and trade-offs

o Try it

Intro

Design principles help us build maintainable, scalable, and robust applications. In JavaScript ecosystems
(Node.js, browsers, React/React Native), we often isolate things that change and hide them behind stable
contracts so the rest of the code stays simple.

Related ideas:

e encapsulate what varies

o favor composition over inheritance

e program to interfaces (contracts), not implementations
e loose coupling

Principle — encapsulate what varies

Apps evolve: requirements change, libraries are swapped, and behavior differs across environments. Encap-
sulation isolates the parts most likely to change and hides them behind a stable API. You can then change
the inside without rewriting the outside.

Benefits:

e maintenance: modify only the encapsulated part

o flexibility: swap or remove behaviors safely

o readability: clear boundaries make code easier to reason about
Techniques for encapsulation (JavaScript)

1) Polymorphism / duck typing

o Use a shared contract (method names and shapes) across implementations. In JavaScript this is
typically duck typing or, with TypeScript, interfaces.

2) Getters and setters

o JavaScript supports get / set accessors to validate, compute, or log around property access.
3) Private fields and closures

o Class private fields (#name) and closures hide internal state from external mutation.

4) Dependency injection and strategy

o Pass in collaborators (strategies) so behavior can vary without if/else branches.

5) Module boundaries

o Export a small public API and keep internals file-local (or unexported) to prevent tight coupling.

Example — encapsulation with polymorphism

We’ll model writing to different databases with a shared contract. Here we use a base class to illustrate
polymorphism. Note: in many JS apps, a strategy object without inheritance is even simpler (see Bonus).

class DbBase {
constructor (data) {
this.data = data;

b
writeQuery() {
throw new Error("writeQuery() must be implemented by subclass");

}

class NoSQLDB extends DbBase {
writeQuery() {
console.log(NoSQL update: ${this.datal}’);
}

class SqlDB extends DbBase {
writeQuery() {
console.log(SQL update: ${this.datal}’);
}

const updates = [new NoSQLDB(250), new SqlDB(500)];
for (const u of updates) {
u.writeQuery(Q);

}

Why it works: Callers depend on the stable writeQuery() contract, not the concrete class. You can add

GraphDB without changing the loop.

Example — encapsulation with properties (get/set and private fields)

Use getters/setters to control access and private fields to protect state.

class Circle {
#radius;
constructor (radius) {
this.#radius = radius;

radius() {
return this.#radius;

radius(value) {
if (value < 0) throw new Error("Radius cannot be negative");
this.#radius = value;

area() {

return Math.PI * this.#radius * this.#radius;

const ¢ = new Circle(10);

console.log("Initial radius:", c.radius);

c.radius = 15;

console.log("New radius:", c.radius, "area:", c.area);

Note: Private fields are enforced by the language; outside code cannot access #radius

Alternative with closures (no classes):

function createCircle(radius) {
let r = radius;
return {
get radius() { return r; 7},
set radius(value) {
if (value < 0) throw new Error("Radius cannot be negative");
r = value;
s
get area() { return Math.PI * r * r; }
Ig

const cc = createCircle(12);
console.log(cc.area);

Bonus — encapsulation via strategy (composition)

Rather than subclassing, pass a strategy that implements the changing behavior. This keeps types shallow
and dependencies explicit.

const NoSQLWriter = () => ({
writeQuery: (data) => console.log(NoSQL update: ${datal}’),
B;

const SQLWriter = () => ({
writeQuery: (data) => console.log(SQL update: ${datal}),
3

class DataUpdater {
constructor({ writer }) {
this.writer = writer;
}
update (data) {
this.writer.writeQuery(data);

}

const updaterl = new DataUpdater({ writer: NoSQLWriter ()

const updater2 = new DataUpdater({ writer: SQLWriter() 1});

updaterl.update (250) ;
updater2.update (500) ;

Benefits: You can inject a mock for tests, add new writers without touching DataUpdater , and avoid deep
inheritance.

Edge cases and trade-offs
When inheritance is reasonable:

o clear subtype relationships with stable base contracts (LSP holds)
o framework constraints that require extending a base class

Pitfalls to avoid:

e over-generalizing too early — don’t abstract until variation is real
o leaky encapsulation — exposing internal fields or returning mutable internals
e hidden coupling — shared mutable state across “encapsulated” parts

Testing benefits:
o strategies can be stubbed/mocked via constructor injection
o private fields reduce unintended state changes
« pure functions (via closures/modules) are trivial to test
Try it
Paste the examples into a Node 184+ REPL or *.mjs file and run with node .

Summary: Find the parts that change and hide them behind a small, stable API using getters/setters,
private fields, closures, or strategy objects. Keep the rest of the system simple and insulated from change.

	Notes - JavaScript - Design Principles - Foundational - Encapsulation
	Dr Nick Hayward
	Contents
	Intro
	Principle — encapsulate what varies
	Techniques for encapsulation (JavaScript)
	Example — encapsulation with polymorphism
	Example — encapsulation with properties (get/set and private fields)
	Bonus — encapsulation via strategy (composition)
	Edge cases and trade‑offs
	Try it

