
Notes - JavaScript - Design Principles - Foundational - Encapsulation

Dr Nick Hayward

A brief introduction to encapsulation as a design principle in JavaScript/TypeScript.

Contents

• Intro
• Principle — encapsulate what varies
• Techniques for encapsulation (JavaScript)
• Example — encapsulation with polymorphism
• Example — encapsulation with properties (get/set and private fields)
• Bonus — encapsulation via strategy (composition)
• Edge cases and trade‑offs
• Try it

Intro

Design principles help us build maintainable, scalable, and robust applications. In JavaScript ecosystems
(Node.js, browsers, React/React Native), we often isolate things that change and hide them behind stable
contracts so the rest of the code stays simple.

Related ideas:

• encapsulate what varies
• favor composition over inheritance
• program to interfaces (contracts), not implementations
• loose coupling

Principle — encapsulate what varies

Apps evolve: requirements change, libraries are swapped, and behavior differs across environments. Encap-
sulation isolates the parts most likely to change and hides them behind a stable API. You can then change
the inside without rewriting the outside.

Benefits:

• maintenance: modify only the encapsulated part
• flexibility: swap or remove behaviors safely
• readability: clear boundaries make code easier to reason about

Techniques for encapsulation (JavaScript)

1) Polymorphism / duck typing

• Use a shared contract (method names and shapes) across implementations. In JavaScript this is
typically duck typing or, with TypeScript, interfaces.

2) Getters and setters

• JavaScript supports get / set accessors to validate, compute, or log around property access.

3) Private fields and closures

• Class private fields (#name) and closures hide internal state from external mutation.

4) Dependency injection and strategy

• Pass in collaborators (strategies) so behavior can vary without if/else branches.

5) Module boundaries

1

• Export a small public API and keep internals file‑local (or unexported) to prevent tight coupling.

Example — encapsulation with polymorphism

We’ll model writing to different databases with a shared contract. Here we use a base class to illustrate
polymorphism. Note: in many JS apps, a strategy object without inheritance is even simpler (see Bonus).
// Base class with a contract; subclasses must implement writeQuery
class DbBase {

constructor(data) {
this.data = data;

}
writeQuery() {

throw new Error("writeQuery() must be implemented by subclass");
}

}

class NoSQLDB extends DbBase {
writeQuery() {

console.log(`NoSQL update: ${this.data}`);
}

}

class SqlDB extends DbBase {
writeQuery() {

console.log(`SQL update: ${this.data}`);
}

}

// usage
const updates = [new NoSQLDB(250), new SqlDB(500)];
for (const u of updates) {

u.writeQuery();
}

Why it works: Callers depend on the stable writeQuery() contract, not the concrete class. You can add
GraphDB without changing the loop.

Example — encapsulation with properties (get/set and private fields)

Use getters/setters to control access and private fields to protect state.
class Circle {

#radius; // private field
constructor(radius) {

this.#radius = radius;
}
get radius() {

return this.#radius;
}
set radius(value) {

if (value < 0) throw new Error("Radius cannot be negative");
this.#radius = value;

}
get area() {

2

return Math.PI * this.#radius * this.#radius; // computed property (read‑only)
}

}

// usage
const c = new Circle(10);
console.log("Initial radius:", c.radius);
c.radius = 15;
console.log("New radius:", c.radius, "area:", c.area);

Note: Private fields are enforced by the language; outside code cannot access #radius .

Alternative with closures (no classes):
function createCircle(radius) {

let r = radius; // closed over private state
return {

get radius() { return r; },
set radius(value) {

if (value < 0) throw new Error("Radius cannot be negative");
r = value;

},
get area() { return Math.PI * r * r; }

};
}

const cc = createCircle(12);
console.log(cc.area);

Bonus — encapsulation via strategy (composition)

Rather than subclassing, pass a strategy that implements the changing behavior. This keeps types shallow
and dependencies explicit.
// strategies
const NoSQLWriter = () => ({

writeQuery: (data) => console.log(`NoSQL update: ${data}`),
});

const SQLWriter = () => ({
writeQuery: (data) => console.log(`SQL update: ${data}`),

});

// service composed with a writer strategy
class DataUpdater {

constructor({ writer }) {
this.writer = writer;

}
update(data) {

this.writer.writeQuery(data);
}

}

// usage
const updater1 = new DataUpdater({ writer: NoSQLWriter() });

3

const updater2 = new DataUpdater({ writer: SQLWriter() });

updater1.update(250);
updater2.update(500);

Benefits: You can inject a mock for tests, add new writers without touching DataUpdater , and avoid deep
inheritance.

Edge cases and trade‑offs

When inheritance is reasonable:

• clear subtype relationships with stable base contracts (LSP holds)
• framework constraints that require extending a base class

Pitfalls to avoid:

• over‑generalizing too early — don’t abstract until variation is real
• leaky encapsulation — exposing internal fields or returning mutable internals
• hidden coupling — shared mutable state across “encapsulated” parts

Testing benefits:

• strategies can be stubbed/mocked via constructor injection
• private fields reduce unintended state changes
• pure functions (via closures/modules) are trivial to test

Try it

Paste the examples into a Node 18+ REPL or *.mjs file and run with node .

Summary: Find the parts that change and hide them behind a small, stable API using getters/setters,
private fields, closures, or strategy objects. Keep the rest of the system simple and insulated from change.

4

	Notes - JavaScript - Design Principles - Foundational - Encapsulation
	Dr Nick Hayward
	Contents
	Intro
	Principle — encapsulate what varies
	Techniques for encapsulation (JavaScript)
	Example — encapsulation with polymorphism
	Example — encapsulation with properties (get/set and private fields)
	Bonus — encapsulation via strategy (composition)
	Edge cases and trade‑offs
	Try it

