Notes - JavaScript - Design Principles - Foundational - Loose Coupling
Dr Nick Hayward

A brief introduction to loose coupling in JavaScript/TypeScript and how to apply it with dependency injec-
tion, events, and composition.

Contents

e Intro

e Loose coupling techniques (JavaScript)

o Example — basic message service with dependency injection
o Example — observer/pub-sub with EventEmitter

o Example — ports and adapters (boundary abstraction)

o Edge cases and trade-offs

o Try it

Intro

Loose coupling reduces interdependencies between parts of a system. When components know less about
each other, you can change one without breaking the rest. In JS ecosystems (Node.js, browsers, React/React
Native), loose coupling is often achieved with dependency injection, events, and programming to small
contracts.

Related principles:

e encapsulate what varies
e favor composition over inheritance
e program to interfaces (contracts), not implementations

Loose coupling techniques (JavaScript)

1) Dependency Injection (DI)

o Pass collaborators in via constructor/factory parameters. Callers choose implementations; callees
depend on contracts.

2) Observer / Pub-Sub
o Emit events and let listeners react. Publishers don’t need to know who is listening.
3) Ports and Adapters (Hexagonal)

o Define a stable boundary (port) that your core code depends on; provide adapters for concrete tech-
nologies (HTTP, DB, etc.).

4) Module boundaries
o Export small public APIs. Keep internals private to avoid tight coupling.

Example — basic message service with dependency injection

class MessageService {
constructor (sender) {
this.sender = sender;

}
sendMessage (message) {
this.sender.send(message) ;

}

class EmailSender {
send (message) {
console.log(Sending email: ${message});

}

class SmsSender {
send (message) {

console.log(Sending SMS: ${messagel}’);
}

const emailSvc = new MessageService(new EmailSender()) ;
emailSvc.sendMessage ("Welcome to the email service...");

const smsSvc = new MessageService(new SmsSender());
smsSvc.sendMessage ("Hello from SMS...");

Why it’s loosely coupled: MessageService only depends on the
specific sender class.

Example — observer/pub-sub with EventEmitter (Node.js)

const { EventEmitter } = require('node:events');
class NotificationBus extends EventEmitter {}

const bus = new NotificationBus();

function onOrderCreated(order) {
bus.emit ('order:created', order);

.on('order:created', (order) => {

console.log('Send email for order', order.id);

.on('order:created', (order) => {
console.log('Update analytics for order', order.id);

B

onOrderCreated({ id: 'A123', total: 42 });

send (message)

contract, not on a

Why it’s loosely coupled: the publisher doesn’t know about subscribers. New listeners can be added or

removed without touching the publisher.

Example — ports and adapters (boundary abstraction)

<void>

class UserService {

constructor(repo) { this.repo = repo; }
async register(user) {

await this.repo.save(user);

class InMemoryRepo {
constructor() { this.items = []; %
async save(record) { this.items.push(record); }

class SqlRepo {
constructor(db) { this.db = db; }
async save(record) { await this.db.query('INSERT ...', [record.id, record.name]); 7

const serviceDev = new UserService(new InMemoryRepo());
serviceDev.register({ id: 'ul', name: 'Ada' });

Why it’s loosely coupled: UserService depends on the repository contract. Technology choices live in
adapters that can change independently.

Edge cases and trade-offs
When tighter coupling may be acceptable:

o small scripts or performance-critical hot paths where indirection is measurable
o stable dependencies that rarely change

Pitfalls to avoid:

e over-abstracting too early: don’t invent ports until variation is real
e hidden coupling via shared mutable state or global singletons
o event spaghetti: untracked listeners can make flow hard to follow (name events clearly and document)

Testing benefits:

o DI enables easy mocking/stubbing of collaborators
e pub-sub can be tested by asserting emissions and handler effects
« ports/adapters let you run core logic with fast in-memory fakes

Try it
You can paste the above examples into a Node.js REPL or a *.mjs file and run it with Node 18+.

	Notes - JavaScript - Design Principles - Foundational - Loose Coupling
	Dr Nick Hayward
	Contents
	Intro
	Loose coupling techniques (JavaScript)
	Example — basic message service with dependency injection
	Example — observer/pub‑sub with EventEmitter (Node.js)
	Example — ports and adapters (boundary abstraction)
	Edge cases and trade‑offs
	Try it

